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ABSTRACT

Following a brief review of phenomenological origins, a comprehensive discussion of the physics
and chemistry of superconducting metailic oxide systems is presented. The real-space covalent electron
transfer (CET) theory, developed in 1987 after the discovery of high-temperature superconductivity
(high-T)) in cuprate systems, is based on the premise that superconductivity is created by spontaneous
charge transfer through covalent bonds where large polarons are formed to compensate charge imbalances
in mixed-valence molecular structures. Superconductivity is disrupted by the thermally activated mobility
that causes normal-state conductivity. In this report, the CET theory is expanded to include a molecular-
orbital analysis of the electron transfer probability (assumed to be unity in the original model). An ex-
amination of the local magnetic superexchange interactions between Cu2*-02--Cu?* ions indicates that the
onset of superconduction requires a breakdown in static antiferromagnetic order (the Ty, T,. = 0 condition)
to eliminate the exchange contribution to the polaron trap energy. This spin alignment frustration that
was predicted in the 1987 version of this theory and later confirmed by several experimentalists is
explained by the spontaneous action of mobile polaronic ions in zero-spin states. By comparing the
covalent transfer (superconduction) and electron hopping (normal conduction) mechanisms, two impor-
tant results are obtained. First, the thermal energy at the critical temperature (k7,) may be approximated
by the hopping activation energy (Ehop) magnified by the ratio of the supercarrier concentration (x) at
T = 0 to the threshold concentration (x) at T =T, i.e., kT, =~ Ehop(x/x,), where x, << x. Second, a new
two-fluid function is derived for the temperature-dependent population distribution between normal and
superelectrons. From the fraction of carriers that is not thermally activated (hopping), condensation to
the superconducting state occurs in the form of dynamic ferroelectricity with spin wave fluctuations along
chains of ordered polaronic dipoles for which the condensation energy is directly proportional to the
square of the supercarrier population. With this relation, it is then possible to derive direct expressions
between the measurable superconduction parameters and the effective supercarrier density as functions
of temperature. Based on these concepts, computed values of critical temperature, magnetic field, and
supercurrent density, as well as specific heat, penetration depth, coherence length, and microwave surface
resistance compare favorably with measured values, both in magnitude and as functions of temperature.
The reported superconducting properties of the various high-T . systems are then examined in the context
of this new model. To contrast with low-T, metals, the covalent transfer concept is applied qualitatively
to systems with conduction electrons. Finally, the various topics are summarized and conclusions drawn
concerning the limitations and applicability of superconduction phenomena, as interpreted by the CET
theory.
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1. INTRODUCTION

In a recent study of high-temperature superconductivity in transition-metal oxides [1], a theory that
originated from the electrical conduction in the normal state was developed to interpiet the reported
superconduction phenomena as functions of temperature and chemical composititon [2-6]. The motiva-
tion for this first exercise grew from the author’s familiarity with the behavior of inhomogeneous and
magnetically dilute ferrimagnetic oxides, to which the newly discovered superconducting perovskites bear
a strong resemblance, through frustration of long-range magnetic order from spin canting and electron
conduction associated with mixed cation valence. In contrast to the microscopically uniform structure
of elemental superconductors, which can be analyzed by standard periodic-lattice band theory, the complex
multication perovskites are not only superconductors in spite of their inhomogeneities, but because of
them. Another marked difference from the low temperature systems is that the carriers are not drawn
from a free electron gas, but rather exist as orbitally bound electrons with transport determined in its
simplest form by the thermally activated charge transfer process called hopping. Consequently, the
covalent chemical bond, so often ignored in the physics of metals, emerged as the most probable avenue
of electron transport in accord with the macroscopic molecule concept that flows from the phenomenology
of the London theory.

To account for the observed effects of systematic chemical substitutions in the oxide compounds,
the problems had to be worked out in real space. In contrast to the conventional many-body approach,
the charge carriers were treated as isolated polarons created by the specific nature of the formal ionic
valence states. The theory, therefore, began with the following premise: If electrical resistance results
from collisions of free electrons with phonons, then superconduction does not involve free electrons, but
rather valence electrons bound in orbital states and affected by phonons indirectly through a statistically
limited activation process. As a result, the occurrence of the superconducting state over the normal state
would arise from competition between two conduction mechanisms, (1) transfer of covalent electrons
through orbital overlaps that create a stabilization energy proportional to the transfer integral b, inde-
pendent of electron-lattice coupling, and (2) electron hopping limited by an activation energy Ehop. Because
the spatial order of the electrons in the superconducting state is destroyed by random thermally activated
hopping, therefore, an analysis of the critical temperature T, revealed a direct dependence on the
magnitude of Ehop; because the superconducting state evolves from orbital transfer through spatially
ordered mobile polarons formed from mixed-valence ions occupying similar lattice sites, dispersal of
polaron sources (fixed-valence cations and/or anion vacancies) was shown to have an important influence
onT,.

Covalent conduction can emerge from the notion of a Mott insulator, where the overlapping of
localized states causes the removal of energy gaps to form a collective electron system. This concept led
to Goodenough’s model [7] of orbital interaction that included both single and mixed valences, in which
the magnitude of the covalent transfer integral b was used as a measure of the relative degree of localized
and collective conduction likely for a particular system. In the initial version of the covalent electron
transfer (CET) theory [1], the focus was on the mixed-valence case, for which a phenomenological theory
derived from the above concepts was applied to critical temperature and normal resistivity data of the




La, Sr,CuO,, YBa,Cu,0,, and Bi,Sr,CaCu,04 perovskite-related systems that involve Cu?*.0%-.Cu>*
(low-spin, S = 0) cation-anion-cation transfers in 180-deg configurations.

For the likely case of antiferromagnetic coupling, electron hopping occurs between sites of the
same sublattice, i.e., hops of two metal-oxygen bond lengths to satisfy the selection rule AS = 0 of
maintaining parallel spin alignments; for CET, adjustments in local spin directions (causing spin wave
fluctuations) require double electron transfers that represent electron pairing in real space. In practical
terms, the effect of this pairing would be to double the size of the smallest current entity, a result that
would account for the factor of 2 that appears to modify the electronic charge in flux quantization and
quasi-particle tunneling experiments. Apart from the Bardeen-Cooper-Schrieffer (BCS) theory require-
ment [8] of k-space pair correlation dependence on phonons, both theories are similar in their relation to
lattice thermal energy; the BCS theory is based on pairs that condense into an ordered superconducting
state below the thermal energy of a threshold “gap,” while the supercarriers of the CET correlate for
thermal energies less than the “trap” energy (Ehop). There is no requirement for phonons to exist as T’
~> 0 K in the CET theory.

In this report, the original model that was developed from the covalent transfer concept is first
refined and then applied to interpret a broader spectrum of superconductor behavior. Initially, traditional
superconduction phenomenology relevant to the new theory is reviewed in Section 2. For testing
compatibility with the CET theory, the London theory is examined in the context of giant molecular
wavefunctions that automatically result from the requirement of spatially ordered carriers (the classical
basis for the coherent wavefunction concept of a boson fluid used in quantum mechanical theory).

From analyses of the magnetic couplings in Section 3, the main contribution to E,,op is attributed
to antiferromagnetic exchange, which becomes diluted with increasing density of zero-spin polarons,
leaving only the small electrostatic contribution associated with the local electrostatic/elastic distortion.
For this reason, superconduction arises from an ionic/covalent bonding duality. With only ionic bonding,
there is no covalent transfer; with both types of bonding, hopping and covalent transfer coexist, and
supercurrents can form where the probability of covalent transfer reaches a minimum threshold.

In Section 4 the original crystal-field approach that was applied to the layered cuprates is placed
in the more general context of molecular-orbital (MO) theory that allows the orbital transfer efficiency
to be defined in quantum mechanical terms. With the conduction perceived as originating from isolated
dipoles, e.g., (LaSr)™-(CuO)*, the (CuO)* molecular ion becomes the mobile polaron in p-type compo-
sitions. To this end, a calculation based on self-consistent perturbation theory is carried out to determine
the transfer wavefunction and to arrive at an estimate of the orbital transfer integral energy b for the CuO-
CuO molecule. For the lattice energy parameters chosen in the calculation, the MO state in which the
‘hh”wﬁerwouldmidcisdmninatedbymeCudxz2orbital.andthepolamnwouldbemainIyCu3“02',
with Cu** in a low-spin § = 0 state. A different set o?lattice energies could place the hole in the oxygen
lattice, a peroxide polaron Cu?*O'~, with the S = 1/2 spins of both Cu?*(T) and O'~({) in opposition to
form anet S = 0.

In Section 5 the effects of the b-dependent transfer efficiency and large-polaron cell radii are then
woven into the original phenomenological model used to compute critical temperature as functions of

E,'op and effective polaron density. The parameter values determined by matching theory to experiment




are then used to compute (as functions of temperature) the normal electrical conductivity of multiphase
superconductors and the microwave surface resistance of high quality superconducting films.

Because the percolation of polaron cells is a necessary condition for superconduction in Section 6,
the condensation to the superconducting state is defined as the alignment of polaron dipoles into dynamic
chains in which the Gibbs free energy is converted to the energy of the supercurrent. The dipolar
condensation is analogous to the spontaneous occurrence of ferroelectricity (or ferromagnetism), except
that energy release associated with electrocaloric or magnetocaloric effects is converted into kinetic
energy — dynamic ferroelectricity with associated spin waves. Based on comparisons with reported
experimental findings, all specific results from this work are shown to be dependent on the density of
supercarriers, including the derivation of expressions for critical magnetic field and current; their variation
with temperature, including their favorable comparison with experiment; the determination of coherence
lengths and penetration depths and their relation to each other; the theory of type-II superconductors,
including an examination of the source and rigidity of the fluxoid lattice; and the mechanical aspects of
the Meissner flux-exclusion phenomenon.

On the basis of these theory refinements, the properties of high temperature superconducting
perovskites are examined in Section 7 through comparisons with experimental results. The discussion
of orbital transfer superconduction is also extended to include lower temperature oxide superconductors,
including LiTi,O, spinel and the nontransition-metal Bi and Pb perovskites (e.g., BaBi Pb,_O,).

Section 8 examines the implications of the CET mechanism in the case of metals based on the
speculation that before superconduction can occur, they “condense” to an insulating state through delo-
calized electrons returning to their parent ions. In this context, some standard topics are discussed, such
as the isotope effect and the correlation of superconduction properties to element groups of the periodic
table. The origins of superconductivity in metals and oxides are compared with the focus on the reasons
for the exaggerated T, values of the polaronic cuprates. Finally, a figure-of-merit temperature that is
proportional to the activation energy is proposed as a basis for comparing the effectiveness of supercon-
ductors.

In Section 9, the essential features of the CET theory are summarized and conclusions are made.
The fundamental tenet is repeated: Superconductivity is a natural state at low temperatures; the thermal
activation that destroys the ordered carrier state becomes the source of the mobility-limited carriers of the
normal conductivity at higher temperatures.

Since the original report [1] discussing CET was published, a number of theoretical results from
that work have been confirmed by experiment. These include:

* The prediction that high-T, superconductivity with electron carriers (n-type) would be possible
with d'© — d? cation transfer combinations, which was discovered in Nd, ,Ce,CuO,_, as dis-
cussed in Section 7.

» The conclusion that long-range static antiferromagnetic order would have to break down before
the superconducting state could be established, which was subsequently verified by Néel temperature
measurements.




« The result from the preliminary theoretical model for critical current density that indicated an
early fall off and tail as a function of temperature that has now been established by many
experiments.

* The accurate prediction of microwave surface resistance measurement results over the complete
temperature range by means of a normal electron hopping conduction model.

Background to this research has been drawn from the works of J.B. Goodenough on the subject of
electrical conduction in metal oxides, from P.W. Anderson and Goodenough on the principles of mag-
netic superexchange, from R.R. Heikes, W.D. Johnston, and P.-G. de Gennes on the hopping conduction
in mixed-valence oxides, and from J.H. Van Vleck, L.G. Orgel, and C.J. Ballhausen on matters pertaining
to crystal-field and MO theory. On the specific subject of superconductivity, several excellent reference
texts were consulted by authors who include F. London, M. Tinkham, C. Kittel, D. Schoenberg,
J.M. Blatt, and J.R. Schrieffer.




2. PHENOMENOLOGICAL FOUNDATIONS

To relate the mechanism of the covalent electron transfer theory to traditional superconductor
phenomenology, it is first necessary to review the basic macroscopic concepts on which any microscopic
theory must be founded.

2.1. THE LONDON EQUATIONS

The magnetic flux density B must be constant to satisfy Faraday’s law V X E = — (1/c)dB/or, because
the electric field E = 0 in a hypothetical perfect conductor. For this reason, such a material would also
be described as a perfect magnetic shield. An unchanging value of B, however, is not a sufficient
condition for superconduction, because the Meissner effect requires the expulsion of flux from the interior
of the specimen as it becomes superconducting, i.e., B — 0. When an external field H is removed from
a normal conductor that might have attained a zero resistance state, the existing B would be sustained
(flux trapping) by induced surface eddy currents. It follows, therefore, that a superconductor differs from
a normal “perfect” conductor by the manner in which currents induced by changes in H are somehow
constrained to ensure the B = 0 condition.

Because superconducting materials are never spontaneously magnetic, B ~ H = 0 (i.e., permeability
p ~ 1). It follows from the Maxwell equation of magnetic induction V X H = — (4n/c)i, that the current
density i is also zero in the interior, where B = 0, that the current must exist only at the surface, and
that the material behaves as a perfect diamagnet with i, inducing a field exactly equal and opposite to
H. 1t is clear from inspection that Faraday’s law alone cannot account for the E = B = 0 condition. To
describe these phenomena London [9] devised two relations to augment the Maxwell equations:

E = @2/ @iy (la)

and
H

- @\ e) (V X i) (1b)

where the London penetration depth A, = (m(:2/41te2n:)'/2 is a constant inversely dependent on the square
root of carrier density n,, with m and e as the electron mass and charge, respectively. In a more general
context, m would be treated as the effective mass m,! but this refinement will not enter the discussions
or calculations throughout this work. For a stationary state, ai.jat = 0, and Equation (la) fulfills the E
= 0 requirement. If Equation (1b) is then combined with V X H = - (4nt/c)i,, the following differential
equations emerge, provided that V-H = 0 and V-i, = 0:'

VH = Hp?
and

2, _ 2
Vi =i, . 2

The solutions of Equation (2) yield H and i_ as exponential functions of distance x from the specimen
surface,e.g.,. H=H, exp(—x/A,L ; therefore, both H and i_are maxima at the surface and decay inward with

' It is necessary to use the vector identity: V X (V X V) = V(V-V) - V2V =— V2V, with V-V =0.




a profile characterized by London penetration depth 7LL. If flux and current are expelled from the interior of
the material from B = E =0 conditions, they coexist in surface layers of depth A , as solenoidal vectors normal
to each other, i.e., V-H =0, V-is = 0, and may be illustrated by the simple geometries of Figurel.
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Figure 1. Perpendicular relations between current and magnetic field for superconducting cylinders of large and
small diameters. In the upper cases, the current responds to an applied external field within a depth A,, and in
the lower ones the field is generated to a depth A, by a current passed through the superconductor. For the thin
cylinders where A, 2 d, the penetration can be almost complete.




A more useful relation is the interdependence of i_ and H in a superconducting environment, where
E = 0. Because V-H = 0, H may also be defined in terms of the magnetic vector potential according to
H=V XA, and it follows from Equation (1b) that

- c/(4m\ L") A

i
s

or
= —(eXmc) nA 3

which is a relation analagously referred to as the “Ohm’s law of superconductivity," where the supercurrent
is controlled by magnetic instead of electric fields. It should be noted that Equation (3) is not gauge invariant,
and that a further constraint must be placed on A for application of this relation to specific phenomenology.
In the most general case of simply connected superconductors, the London gauge V-4 =0 is chosen to conform
tothe V- i, = 0 condition that defines the observed supercurrent rigidity, i.e., no current components normal
to surface

2.2 THE MACROSCOPIC MOLECULE CONCEPT

A more fundamental physical derivation of Equation (3) may be obtained from classical electrodynamics,
where the mean local canonical momentum of individual carriers (p) = m(v) + (e/c)A, with {v) as the local
mean carrier velocity. Statistical mechanics dictates that (v) = 0 in a normal conductor, therefore it follows
that {p) = (e/c)A in the normal state. For a superconducting ground state, however, a Bloch theorem [10]
concluded that {p) = 0, implying a certain rigidity or inability of the momentum to respond to H, therefore
establishing that (v) = (e/mc)A. For a chain of ordered carriers of number density n, it follows that the
supercurrent density i, =—n e(v) =—(n, e*imc)A, thereby producing an alternate denvatlon of Equation (3).
For this electrodynam ic approach to comply totally with the constraints of the phenomenological result that
V-i =0, itis not only necessary that the gauge condition V-A =0 apply, but also that Vn_= 0.2 Therefore,
the basis for describing the supercurrent as spatially rigid, i.e., the (p)=0 condition, must include the condition
that the distribution of carriers be uniform (ordered) along the current path.

The notion of spatially ordered carriers is not readily applicable to a free-electron gas. Because the first
superconductors were metals, a quantum mechanical altemative to this classical concept evolved from the
nonlocal ideas of Pippard [11]), i.e., the analogy of supercarrier coherence length F,o to normal carrier mean-
free-path, giving rise to the Ginsburg-Landau [ 12] ensemble-average wavefunction y , which in turn is related
to the supercurrent electron density by the standard expectation value relation

2 _
ly,12=n @

2 Recall that V'i. = (ezlmc) (n:V-A + A-Vn’) and for V-i‘ =0, both V-A and Vns =0. This latter condition is
not only necessary for supercurrent rigidity in the classical argument but also sufficient, because a carrier
distribution dynamically ordered in real space is arigid current by definition. Ineffectit should be considered
the fundamental physical requirement for the applicability of Equation (3) to superconductivity.




where the number density n_now represents the instantaneous probability of a supercarrier existing at a
position vector r. As a result, Equation (3) may be written as

i = —(ezlmc)lwsle , &)

with the attendant implication that V\ys = 0 to satisfy the condition that Vn‘ =0.
Four important conclusions are deduced from this wavefunction rigidity concept:

» The current density vector i is directly and exclusively controlled by the magnetic field through the
vector potential A.

» The eigenstate of the supercurrent has the properties of a space-invariant wavefunction with zero
average mechanical momentum ((p) = Vy, = 0).

* The resulting spatial invariance of the carrier density n_implies ordered or equispaced
supercarriers.

« Superelectrons cannot be part of the normal free-electron gas.

If the carriers have similar quantum states that may be described in terms of a single giant MO
wavefunction, the current rigidity imposed by the fixed wavefunction provides an immediate explanation
for the absence of eddy currents and the presence of flux trapping in the superconducting state.

2.3 NONLOCAL CONSIDERATIONS

In a manner similar to the nonlocal arena of normal electrons that move independently within the range
of a mean-free-path ¢, Pippard [11] suggested that a sphere of radius E,o be considered as a nonlocal region
in which each superelectron would exist within the correlation scheme. Fornormal conduction, £is the average
distance that an electron can be transported without scattering; for superconduction, E‘o is the average distance
that a superelectron can remain in coherence with the ensembie as part of the giant molecular state. As
examined in Section 6.7, the coherence length §o may be estimated from the uncertainty principal once a value
for momentum p_ is determined.

Ginsburg and Landau [12] reasoned that because wavepackets have a spatial profile, the coherence
length could be readily introduced through a generalized form of y, with an exponential decay and proposed
a solution of a Schrodinger-type equation with

v,(1) ~ vy, 0 exp(—f) (©6)

where £ is a more generalized coherence length. In this context, § represents the smallest size of wavepackets
that the superconducting charge carriers can form. In a context more appropriate to the discussions that follow,
the gradient of the superconduction carrier number density wavefunction may be expressed as

Va ~ QRv,I1* ~ BN, . ™
As§ — =, Vn_— 0, to approach the condition for spatial ordering of carriers.




In band-theoretical terms that have been applied to conventional metal superconductors, an intrinsic
coherence length éo ~ (h2r)v/kT is defined in terms of the Fermi velocity v, and superconduction critical
temperature T . A more general definition was pointed out by Pippard for materials where the coherence
length is reduced by impurities that limit the electron mean-free-path £, according to 1/€ = 1/§0 +1/L. Asa
consequence, superconductors may be categorized as:

Class 1. Type-I pure superconductors with large §0 >> lL that require a full nonlocal theory treatment
(Pippard superconductors)

Class 2. Impure superconductors with &) ~ { that are controlled by the mean-free-path (London limit,

where £ <& )
Class 3. Pure superconductors with § <<A,.

For Class 2, Equation (3) is modified toread i =— (n_‘ezlmc) (Ej&o)A, where 5_,3 << E_,ol 2. only for Class 3 is
Equation (3) valid as stated. In practice, Classes 2 and 3 are type-II superconductors, the former resulting from
impurities and the latter representing the case of small intrinsic coherence length, which is the focus of this
report.

In Section 6 the ratio X = XL/§0 is shown to be effectively constant with temperature. In physical terms,
the ideal type-I superconductor features K << | with §0 — oo and AL — 0; in the opposite extreme, the mag-
nitudes of these quantities reverse, K >> 1, with § — 0and A, — o in the natural type-II case (Class 3). The
essential point is that the coherence length represents a measure of the wavefunction uniformity; it is the
quantum mechanical equivalent of the spatially ordered carrier concept of the classical London theory, which
will be examined further in the context of CET.




3. THERMALLY ACTIVATF D SEMICONDUCTION

As described in an earlier report [ 1], electrical properties of insulating oxides may be approached from
eitheralocalized extreme, where the carriers are bound to their sites in a largely ionic bonding scheme, or from
the collective carrier extreme that implies sufficient covalent bonding to warrant the consideration of energy
bands. From Section 2, it is apparent that the giant molecular system described by the Londons must involve
a dual character that includes both a quasi-discrete energy level structure (narrow bands from tight binding)
and covalent bonding to permit the formation of a continuous chain. As a result, it is logical to begin with the
localized case and then add covalent effects as an increasing perturbation.

Where a fixed impurity ion or defect is present at a lattice site, the charge imbalance may be compensated
by an electron (or hole) induced on a neighboring site. This charge forms the opposite half of a dipole and
is, therefore, coupled electrostatically to the fixed charge. As part of the local lattice accommodation it is also
trapped in its site by a deformation of its surroundings. Because it is mobile through thermal activation, the
charge with its trap is a polaron; where the trap involves magnetic exchange stabilization, the polaron may
be described as magnetic. The significance of the polaron concept in superconductivity is that it represents
the source of electrical conduction for bound electrons. A general theory of polarons has been outlined by
Frohlich [13]). More relevant to the current work, however, is the molecular-crystal model developed by
Holstein [14], where two polaron extremes were defined: a small polaron, in which the carrier is localized
within a lattice parameter of the polaron source, and a large polaron, which can become itinerant within several
lattice parameters radius surrounding its fixed source. In both cases, however, thermally activated electron
hopping is a principal cause of conduction.

Semiconduction in metal oxides, therefore, represents the intermediate coupling (large polaron) regime
that interfaces between the purely localized (small polaron) and the fully collective situation usually
interpreted by band theory. In the analyses to follow, the large polaron case will be explored with the
assumption that the band is narrow enough to be approximated by the individual molecular orbital states. For
the purpose at hand, the chemical origins and physical phenomena associated with large itinerant polarons will
be examined first.

3.1 MIXED-VALENCE ORBITAL CARRIERS

Of the two situations where bound electrons transfer between similar sites, one is a general case that is
illustrated in Figure 2(a) (from Tilley [15]), consisting of transfer between similar ions M™ that creates two
differentions M and M™* '™ of the same elementand requires anetenergy expense (excitation) according
to the relation

M™ o M 4 MBI _ AUy 8)

where AU is the net transfer energy required, closely related to the algebraic sum of the ionization potentials
(corrected for screening effects of the lattice) and typically measuring several electron volts.




The other case and the mechanism of interest in this report was postulated originally by Verwey
[16] for the Li'* Ni?*,_, Ni3* O system? and examined by Zener [17] and de Gennes [18), is a special
case of Equation (8) that involves the transfer of an electron between different ions of the same element
(i.e., a mixed-valence situation that creates a polaron), according to

M™ o MWD 4 - )
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Figure 2. Two types of charge transfer in oxides: (a) excitation (> 1 eV) in the uniform valence case where the
electron transfer creates two “new” ions M'™'"* and M'"*!"* requiring energy AU, and (b) activation (< I eV)
occurring with mixed-valence cations, where the transfer causes only a change in carrier location.

3The Li'* ion acts as an acceptor relative to the divalent cation lattice to create a p-type hopping semicon-
ductor. Because metal ions are normally less stable than filled-shell O?%" anions in the ionic lattice, the elec-
trons are removed from the Ni* rather than the 0>~.
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The initial and final energy states of the system are unchanged (AU = 0) because the two sites are
equivalent; only the participating ions have exchanged positions in the lattice, as shown in Figure 2(b), and
only one band (usually narrow) is required to describe the conduction states. For unequal populations of M™
and M7 the minority ion is the mobile half of a dipole electrostatically coupled to a fixed source with its
ratio to the total population of its particular sublattice indicated by 0 < x < 0.5. (If x 2 0.5, the other ion will
be the mobile half and will be designated as the polaron, either n or p type, depending on the sign of its charge.)
Where x is small, the carrier states are localized as individual energy levels in the manner suggested by
Goodenough [7].

The occurrence of mixed valence is restricted to a select group of ions, particularly those of the d" series
transition elements. There are two common situations of mixed-valence cations in a crystal lattice: (1) where
the natural stoichiometry calls for a nonintegral average valence in a cation sublattice (e.g., Fe,O,, Mn O ),
and (2) where a mixture of fixed-valence ions or lattice vacancies force a variation in cation valence within

a sublattice to preserve stoichiometry (e.g., the magnetically altered ferrimagnetic spinels and gamets [19]).

Where mixed valence exists, the imbalance in the numbers of the two valence states determines whether
the conductivity is n or p type. In the example presented in Figure 3(a), where Sr?* ions are substituted for
La** inthe La3“2_XSr2+ Cuz’l_XCu“XO system, an equal number of Cu®* ions must be created to reestablish
electrostatic neutrality.” Because the Sr™* ions occupy a minority of the A sublattice dominated by La*, they
represent isolated sites of fixed negative charges; the corresponding Cu** ions, however, represent positive
charges in the B sublattice, i.e., the other halves of the dipoles formed with the Sr?* polaron sources, and will
occur in closest proximity to the Sr?* site to reduce the Madelung energy. Moreover, the Cu**ion can occupy
with equal probability any of four geometrically equivalent sites around the Sr?* ion in this particular lattice,
and the positively charged hole carrier associated with the Cu>* ion can move between them through the
thermally activated mobility mechanism. With the application of an external electric field, the hole can move
away from the Sr** negative charge, extending the dipole and increasing the energy. For this reason, the hole
isconsidered tobe tethered to afixed negative source (Sr**)", and the conductivity is p-type because the polaron
is positively charged. In Figure 3(b), the case of a negative polaron that would give rise to n-type conduction
is shown. Instead of Sr**, the fixed-valence ion is tetravalent, e.g., Ce* orPr*, representing a positive charge,
and the mobile ion then becomes Cu'*, representing a negative polaron and providing an n-type conductivity.

Thermally activated electron hopping is a form of conduction that is peculiar to metal oxides with cations
of mixed (dual) valence. Because conductivity increases with temperature for thermal energies below the
level of activation, it is described by a relation similar to the familiar law of diffusion [15,20,21],

G = Nel(T) = Ne (eDIKT) exp(-E, /) . (10)

“The assignment of the 3+ charge to Cu in the (CuO )? ion emerges from the MO analysis carried out
in Appendices A, B, and C. In polaron notation the chemical formula La"'z_xSrz"xCuz"l_xCu“xO , becomes

(La*,_Sr** y(CuO,)™.
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where N is the total number o: carriers, W(7T) is the thermally activated mobility, D is the diffusion constant,
and Ehop is the activation energy. The polaron ion harbors a trapped carrier that is isolated from other carriers
by the average polaron separation distance; the conduction is intrinsically local and is treated as such
theoretically.

Conductivity as expressed by Equation (10) resembles that of band semiconductors, where an exponen-
tial factor also controls the carrier density n. For the case of a degenerate semiconductor with large impur-
ity density N; >> n and impurity ionization energy E, much smaller than the gap energy, »(T) ~ N, T
exp(-E/kT), wnth the mobility influenced by temperature as determined from standard conductivity theory
wT)~ Tm, yielding a resuit similar to Equation (10) if E=E ,withc~0, T34 exp(-E, /kT) In the limit
as T — 0, however, excited carrier density n — 0, thereby elxmmatmg any possnblhty of spontaneous con-
duction by an alternate mcchanism. At extreme doping levels, however, one is tempted to speculate on the
possibility that tunneling between impurity sites may provide such a temperature-independent conduction
mechanism. The p-type .ompound AlGez, for example, has T =175K.

3.2 ELECTROSTATiC/ELASTIC TRAP ENERGY

The magnitude of E, _ involves a combination of several factors, most of which can be treated only
semiempirically. In physical terms, it is the polaron trap energy (the stabilization energy difference between
the two valence states in the lattice) with a basic contribution E that arises from the electrostatic coupling

‘between cation ligands. Among the effects that contributeto E  arethe ionization potential (electronegativity)

differences, the MO znd crystal-field stabilization energies, and the compensating effects of lattice elastic
strains that occur spontaneously around the carrier site, e.g., static Jahn-Teller effects in Cu?* and Ni** (low
spin), or through physical accommodation for differing ion sizes and valences in mixed-cation systems.

From considerations of lattice electrostatic energy minimization, the attractive potential of the polaron
ion to its source represents a major energy-compensating influence that will be optimized by keeping the
effective dipole separation as small as possible. Hence, there emerges the concept of the polaron tethered to
its source by the Coulomb inverse square law. Extending the general rule that local energy differenccs will
tend to be minimized, one would expect site stabilization energy differences of electrostatic origin to be
reduced through lattice elastic adjustments. For this reason, measured activation energies are small in
comparison with the electronegativity and other energies that make a contribution to the overall stabilization.

The transport of electrons trapped in a crystal lattice evolves from polaron theory, and the reader is
encouraged to consult standard articles [13,22,23]. For the purpose at hand, however, it is sufficent to
recognize that a carrier created by the mixed-valence condition is indeed a polaron (defined as the mobile
charge and its surrounding cloud of optical phonons) and that the weak-coupling solution for the polaron
ground state may be used to describe Eel according to the relation [13].

E, = @), (1

where the coupling constant® a is expected to be less than unity for 3d”-series oxides (see selected examples
in Table 1 [23] where a is also seen to decrease with the amount of covalence or polarizability), and v S is the

3 The magnitude of this dimensionless constant is related to the density of the phonon cloud surrounding the
trapped carrier and is, in general, inversely proportional to the dielectric constant, as discussed in Section 8.5.
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maximum phonon (Debye) frequency ~ 10" Hz, yielding a Debye energy hv,, ~40 meV. For the oxides,
E_ would typically fall below 100 meV, and for the superconducting Cu perovskites that feature e, orbital
covalence, E  can fall below 10 meV. For metals, where screening by conduction electrons causes local
dielectric constants to become large to the point of being undefined, o and consequently E,, would be sub-
stantially smaller.’ In anticipation of the theoretical development to follow, note that a qualltanve correlation
appears to exist between E , and the superconduction critical temperature T ; in both cases the highest values
tend to occur for materials with the lowest normal conductivity.

TABLE 1
Polaron Electrostatic/Elastic Trap Parameters®

lonic lonic lonic Mixed d-p Mixed s-p | Covalent s-p3 i
Compound LiF AgCl ZnO cgob PbS GaAs ]
K 9.3 12.3 8.5 15 to 20° 17.9 135
vp(Xx 10" Hz) 2 0.5 2 05 1
a 5.2 1.7 0.85 <1 (est) 0.16 0.06
hv s(meV) 81 24 83 : 18 3
E,, (meV)? 210 20 36 (3)° 15 1

2 Derived (except for CuO) from tabulated data in Brown [23], Table 1.

® With d-p covalence through the exz_yz orbital in a 180-deg Cu-O-Cu bond, it is reasonable for
CuO to fall in the regime of at least moderate covalence for this particular orbit.

°For Cu,0,, K = 18.1 (Handbook of Physics and Chemistry, CRC Press, 62nd Ed.).
9 Calculated from (a/2)hv .
® Measured as E, in Goodenough et al. [24].

®Itis appropriate to recall the approximation often used to estimate potentials of impurity atoms in
semiconductor hosts,

E, ~ 2®mZ’*/K°R
which represents the expression for the ionization potential of a hydrogen atom (Z = 1) with the Coulomb field
reduced by the square of the host dielectric constant.
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To calculate accurately Emp for a particular situation is a formidable task. A more reasonable approach
to gaining insight about its relative magnitude in transition metal oxides may begin with the experimental
observation that the activation energies are typically 0.1 to 1 eV at low polaron concentrations, as evidenced
in the data of Heikes and Johnston [20] shown in Figure 4. Because this range of values is substantially larger
than the energies expected for pure elastic stabilization in metal oxides, an additional contribution from
magnetic exchange must be considered.
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Figure 4. Ehop versus polaron density for monoxides of Mn, Co, Ni, and Cu (from Heikes and Johnston [20]).

3.3 MAGNETIC EXCHANGE TRAP ENERGY

According to Goodenough’s qualitative summary for 180-deg superexchange [25] presented in Tables
2 and 3, all the couplings for the 34" transition series e_-occupied ions relevant to this investigation favor
antiferromagnetic alignment. If one begins with the premise that at least partial short-range antiferromagnetic
order is always present, particularly between the polaron ion of spin S, and its neighboring lattice ions of spin
S, the trap boundaries are formed by lattice spins of opposite polarity. Under these conditions a basic
magnetic contribution to the activation energy emerges: The transfer electron will be destabilized internally
on its new site because its spin direction opposes the existing net spin alignment. If the transfer jons are in
turn coupled antiferromagnetically to the molecular field from the surrounding neighbors, the transferred
electron spin causés an additional destabilization through its coupling to this external exchange field. It must
be concluded, therefore, that as long as antiparallel spin alignments ave ordered in two distinct sublattices, the
energies between initial and final states of intersublattice transfers are unequal by a magnetic exchange energy
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TABLE 2

Octahedral-Site d” Superexchange Couplings for 180-deg Bonds (High Spin)
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TABLE 3
Octahedral-Site d” Superexchange Couplings for 180-deg Bonds (Low Spin)
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Em According to de Gennes [18], energy-conserved transfers must take place within the same sublattice,
and such events can occur through electron hops between next-nearest neighbors over a barrier of energy

%m==%|+Emg’

depicted in the rectangular barrier model of Figure 5.
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Figure 5. Schematic model of elastic and magnetic contributions to the hopping electron activation energy barrier.

For the energy-conserved transfer of S, to a site two lattice lengths away, the two electrons of the S,
ions form a pair that creates a moving spin fluctuation as they reverse their spin directions to satisfy an internal
exchange requirement — Hund’s rule for maximum S in the case of a half-filled/empty orbital combination
or the Pauli principle in the case of a filled/half-filled combination. (An alternative way of describing how
this AS = O selection rule is satisfied is that one electron moves in two consecutive steps, temporarily
occupying the empty state of the intermediate ion.) To analyze the energy of electron transfer between next-
nearest-neighbor ions in an antiferromagnetically aligned lattice, consider the virtual process depicted in
Figure 6, where §, = S, + 1/2 and S’ = S, — 1/2 represent the condition of maximum energy prior to spin
reversals. This case discusses the problem of a hole polaron in a p-type hopping semiconductor, but the rationale
would apply equally well to an electron polaron in an n-type material). If li',ms is assumed to be equivalent
to the energy required for the passage of a polaron S, directly through the opposing sublattice, the exchange
interactions associated with a basic three-ion chain must be examined. After summing each of the individual
exchange terms 2J§; » S between six next-nearest neighbors’ i and j linked by 180-deg M-O-M bonds among
the three ion sites mvolved and then subtracting the total energies of the initial (S,T ~ S, 4 - § T) and
final (S g S 'l1-8 T) states, the net magnetic destabilization energy is obtamed
(13)

E,, = YQ-3)S,+35,) .

where J is the exchange constant (normally < 0, but here only its magnitude is used), and z is the number of
next-nearest neighbors. With z =6, Em =9Jfor§, =1/2,21Ufor S, =1,33J for S, =3/2,45) for§, =2,

and 57J for §, = 5/2.

7 Twelve nearest-neighbor cations are linked by direct cation-cation t, orbitals across cube face diagonals and
play a role in the overall exchange where half-filled tye orbitals are involved.
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According to Anderson’s theory of superexchange [26] as applied to these simple oxides,

2rniR2
bee = @IS,

14)

where U is the ionization potential involved in the electron exchange, and hm = bxz_ yz + bzz + b’ (b' isthe effective
contribution from partially filled 'zg'ZP“ states) and is the combined transfer integral for the particular cation-
anion interaction in the x-y plane. The origin of this definition of b, requires some explanation. In his original
work Anderson reasoned that the b integrals could be estimated from simple relations to the optical splitting
parameter Dg, accordingto b, =(10/3)Dq with individual orbitals weighted by coefficients determined from
the size and directions of the respective e_ wavefunction lobes. For example, along the x or y directions the
coefficients would be 5/2 and 5/6, respectively, forthed 2 2 andd 2 states. Toremain consistent with Equation
(14), therefore, the contributions to b, from the two e, orbitals would be expressed as bxz_yz = (3/4)b , and

b2=(1/4)b,.
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Figure 6. Two-dimensional model of the intrasublattice passage of a “hole” in an antiferromagnetically ordered
lattice: (a) initial state, and (b) virtual destabilized state with two electron spins reversed to create possible spin

wave fluctuation.
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As atestfor his theory, Anderson attempted to calculate the Néel temperatures from the standard relation
of classical molecular-field ferromagnetism theory.® To this end, he estimated the J values from b, through
Equation (14). Although the calculated T, values were more than 50% higher than their measured counter-
parts, the qualitative trends served to verify his theory. One of several possible sources of the discrepancy
may be seen in the analysis of the one-dimensional MO approximation in Appendix C, where the relation
between b and Dq is determined after application of self-consistent pertubation theory that reveals only an
indirect connection between b and Dgq for these compounds.

A consistent set of J values is desired for the present discussion, and a reasonable value for b2 _2 will be
necessary for computations later in this report. Therefore Anderson’s approach will be used in reverse,
beginning with the well-established Néel temperature of NiO applied to the specific relation for the face-
centered antiferromagnet family®

J = 6kTJz5,(S, +1) . (15)

For T, =520K, z = 6 nearest neighbors, S =1 (for high-spin Ni2*), it follows that J = 0.022 eV. th
these values of J and S combined with U =7 3 eV Equation (14) then yields b = 0.57 eV, leading to
b 2_2 =043eVandb 2= 0 14 eV. From these basic b values, effective b values may be constructed for other
transition-mctal oxides, as shown in Table 4. In the important case of CuO, only b 2_2=0.43 eV applies. For
CoO and MnO, where it is estimated that partially filled , 2% states make a25% contnbutlon through n bonding,
b =0.57(1 +0.257) is used, where 1 is the number of active t, states ie,t=1for Co2+ and 1= 3 for Mn>*.

In general, the agreement between calculation and expenmcm is probably better than it deserves to be,
based on the uncertainties involved. Ascommented inthe footnotes to Table 4, E_, numbersbasedon Heikes
and Johnston data at x = O are about a factor of 2 higher than what is typical for lius group of materials.

3.4 MAGNETIC FRUSTRATION AND ZERO-SPIN POLARONS

As determined in several studies of ferrimagnetic spinels and gamets [29,30], the presence of a
diamagnetic impurity in a magnetic sublattice directly reduces the molecular-field coefficient Nj’. of the op-
posing sublattice and indirectly reduces the coefficient N‘.j between the sublattices, causing decreases in the
Curie temperature and controlling the contour of the thermomagnetization curve. This result may be readily

% The standard formula for the ferromagnetic ordering temperature derived from the Curie-Weiss molecular
field theory is

Ty = 2J25(S + 13k

In the case discussed here, Equation (15) was chosen instead of the above relation, because it applies directly
to the face-centered antiferromagnetic structures of the Mn, Co, and Ni oxides. The derivation of Equation
(15) was taken from Equations (6-3.27), (8-3.6), and (8-3.24) in A.H. Morrish, The Physical Principles of
Magnetism, (New York: John Wiley & Sons [1965]).

? This value replaces U = 6.3 eV originally used by Anderson (see Table 1 in Anderson [26]), which appears
to have resulted from an error in subtraction.




TABLE 4
Magnetic Trap Energies Emg forz=6

\ Em(cal) Em(exp) Em(cal) Em(exp)

U | b, J | (x=0) | (x=0) F,~0 (x = 0.05)
lon | Contig S, sp (eV)
Mn2*| d° 5/2 9.9 1 |o.oos| o0.46 0.67 0.10 0.60
Mn**| a4 2
Co**| o 32 58 | 0.71 [0.019| o064 0.66 0.11 0.30
Co** | o 1
Ni2* a8 1 73 | 057 |0.022| 0.54 1.21¢ 0.07 0.20¢
Ni** | dIs 12
cu*| d° 12 59 | 043}0.063| 055 0.69 0 ~0
cu* | d8is 0

2 The value of b, varies somewhat among these ions and depends on the distribution of d electrons.
Ford®and d’ (Iow spin), there is only one possible coupling and the maximum bis estimated as (5/2)Dq
for the d; po—d,2_ 2 bonds; for d® (high spin), two orbitals (d,2 2 and dp) participate and the
maximum is (10/3)D¢r ord (high spin), d®, 5, and d* (high spin) all include smaller (~ 25%) contribu-
tions from the usually neglected m-bonding t,gStates. The average Dq value ~0.1 eV, but varies by about
125% among the group. by is scaled to 0.57 eV of NiO, with adjustments for Co?* and Mn?* to account
for the contributions from half-ﬁlled t states, as described in the text. For Cu?* with a half-filled a2 2
orbital, b, = b2 _yz

b Co®*(d®) will condense to a low-spin S = 0 state at low temperatures [27] with an energy of 20 kcal/
mole ~0.86 eV. In this event, both LA electrons would undergo the transition in contrast to only one for
the o case.

€ This value for Ni2* is anomalously high in comparison with others, e.g., the Springthorpe et al. value
of 0.28 eV for x = 0.002 [28], suggesting that the polaron concentration may be smaller than believed
and that the hopping mechanism may not yet be influencing the conductivity. The other values in this
series are also somewhat high, raising the possibility of a systematic error in measurement or data
reduction (e.g., a factor of 2) affecting all these resuits.

9 At temperatures below 100 K, Ehop was measured as 0.009 eV [28], as discussed in Appendix D.

explained by the notion of local spin canting (with angle 6 to the alignment direction) surrounding the dilutant
ion, where the loss of exchange linkages at neighbor sites reduces their spin commitments to the magnetic
order and their contributions to the molecular (exchange) field. In Figure 7(a), this effect is represented by
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an angular dispersal of the spins immediately surrounding the three ions involved in the transfer process, with
the transfer ions themselves remaining in momentary 180-deg alignments (as in the snap-shot of a transfer
event). For this situation, Equation (13) can be modified according to
l".‘m8 = 2J[(2z-3)S Fg+3S,] , (16)
external + intemal
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Figure 7. Growth of magnetic frustration from (a) local spin canting caused by magnetic dilution o (bj regions of
complete disorder defined by the boundaries of itinerant Sp = 0 polarons.

where F < | isacanting factor related to the average alignment component {cos6) that depends on the amount
of magnetic dilution.

With F < 1, Equation (16) indicates that Em’ will decrease accordingly as the antiparallel ordering
breaks down. Because Fo would decrease with x in the Lile_XO systems from Li dilution, the Heikes and
Johnston data {20] would be explained by the decrease in the external part of Equation (16), trending toward
alimiting value of E___ = 6JS,. For the polaron ions involved in this study, comparison between theory and
experiment is also presented in Table 4, where at least qualitative agreement is established. The failure of Ni,
Co, and Mn to reach calculated levels suggests that only for Cu with S, = 0 does F, — 0 and gives credence
to the notion that diamagnetic polarons are required for a complete local breakdown of magnetic order.

Twoconditions necessary forthe minimization ofEmemcrge from Equation (1 6).F°->0andSP=0(thmby
setting S, =1/2).If S, =0, the magnetic alignment requirement is erased. The effects of canting are somewhat more
subtle, but nonetheless play an important role in the ability of some systems to support activationless current -
transport. As depicted in Figure 7(b) for the real case of S, = 1/2, S, =0, the polaron has a double-barreied effect
on neighboring lattice spin alignments that can lead to a total breakdown in static magnetic order. In this situation,
the intrinsic part of Equation (16) drops out, and (12) can be approximated by

Eppp=E,+Qz-3JF, . a7
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Figure 8. Cation sublattice projection of La,_Sr,Cu0 , viewed along ¢ axis, with La and Cu ions in alternate planes.
Note the canted spins about the Sp = 0 Cu* hole (at corners of shaded square) and the four small polaron Cu sites around
Sr?* that provide a region of frustration that encloses 12 spins.

Withan S, =0polaron, it follows that its diamagnetism will also create aregion of local frustration around
the polaron source. Because the exchange isolation [29] from the missing couplings will also induce canting
in the spins immediately surrounding the zero-spin polaron site [30], each polaron can produce an extended
region of magnetic disorder.

In the superconducting perovskites, there is no direct dilution of the Cu sublattices. Asexamined at length
in the original report {1], it is the minority Cu** ions in low-spin (S » = 0) states that provide the cause of spin
canting. Unlike the case of fixed magnetic dilutants, the itinerance of the Cu* ions can cause the greatly
enhanced region of frustration. Transfer of the polaron also means that the elastic deformations of the trap
form a “wake” of canting (Fy — 0) that relaxes at a rate determined by the strength of spin-lattice coupling,
thus creating a persistence to the region of frustration that could be sustained until the polaron retums to the
same site (similar in principle to the raster of a television screen). At low temperatures the relaxation time
increases, thereby offsetting the tendency for magnetic ordering to stabilize as T — 0, and raising the likeli-
hood of continued frustration within the region affected by the movement of the diamagnetic polaron.

Within the small polaron limit depicted in Figure 8 for La, Sr CuO,, a total of 12 spins are subjected
to at least partial magnetic frustration.'® As the density of moving polarons increases and the average value
of Fy — 0, the net exchange field would be canceled at x = 0.08, with individual spins forming a type of fluid
state that is uncommitted to any single direction [31].

YInan antiferromagnetic system, acommon condition for the breakdown of magnetic ordering is Nij > (3/4)N,
as pictured in Figure 8 in terms of the respective J constants.
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3.5 SUPERCONDUCTION AND ZERO-SPIN POLARONS

A generic representation of Equation (17) is presented in Figure 9 to suggest the manner of the decrease
inE___ with the growth of spin disorder as the polaron density increases. In conjunction with the Figure 4 data,
the :#ects of spin canting are suggested by the decrease in E,  With polaron concentration, where the most
pronounced effect appears with the Cu®*** combination. (Note that each M** polaron is accompanied by a
diamagnetic Li'* ion that likely occupies an adjacent site to minimize electrostatic energy.) Here the spin state
of Cu** is most likely S » =0, inaccord with the noncubic symmetry of the CuO lattice that should result from
a static Jahn-Teller effect. Because the activation energy of the Cu system decreases to values in the
millielectron volt range as the exchange interactions erode with increasing x, it is concluded that the major
part of Ehop in transition metal oxides is contributed by magnetic exchange.!! Additional support for this
conclusion appears in the data of George et al. [32], shown in Figure 10, where the activation energy above
room temperature is seen to increase with the spin of the rare earth perovsklte (RE) CuO 4, in which the RE
ions exchange with Cu?* jons. Only the composition with diamagnetic La** producesan E hop inthemillielectron
_ volt range, exposing a metallic slope of p versus T in the regime below 600 K.

1453919
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Figure 9. Model curve of the decrease in activation energy with the increase in polaron concentration.

"' A more comprehensive summary of the Ehop values for these simple transition-metal oxides may be found
in Schieber [19], Section V.A.
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Figure 10. Influence of rare-earth (RE) magnetism on the semiconduction (activation energies) of an (RE)ZCu04
series (George et al. [32]).

As summarized in Table S, only a select number (see Figure 11) of mixed-valence pairs may be capable
of satisfying the zero-spin condition for covalent transfer. These situations arise in transition metals where
crystal-field stabilization energy of the higher energy electrons is comparable to the mutual repulsion energy
(internal exchange) of electrons orbiting the same nucleus, i.e., the basis for Hund’s rule. In order of
descending d electron population: P A L ds(low spin), ds(low spin) - d7(low spin), d’(low spin)
- d6(low spin),and d "5 d® Thes' = sC%is included, because it will be shown later that the covalent transfer
mechanism can apply for Pb**™** and Bi*®*) in perovskites [also TI**3%) if it can be found in a suitable
compound].
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TABLE §
Zero-Spin Polarons for Covalent Transfer®

Spin States Coordination® | Cations® Orbital? Delocalization Polaron
S=12 S=0 Type®
d - d° Octahedral Tid+(44) dy.xzyz | half-flllediempty | nand p

V4+(5+)
Nb4+(5+)
Tad+(5+)
d5(ls) - d4(is) Tetrahedral Fe>®) | dp, 2 ,2 | hatt-filledrempty
d'(Is) —» db(ls) Octahedral Co%*3+) dz_ 2 | halt-filed/empty
d'(Is) « db(Is)f Octahedral Ni3+2+) d2 half-filled/filled p
d® > dés) Octahedral Cu2+3+)’ dz,2 | half-filled/empty p
P d? Octahedral Cu(%) | d2 2 | haltfilledfilled n
s o5& Octahedral Pb3+4) s(pP | half-filled/empty P
Bi4+(5+)

2 Entries in bold type indicate cases where suprconduction has been reported in an oxide. For
d"—d° and d'9-4d%, the relative distribution of the mixed valence creates n-type polarons.

b Octahedral sites reduce to planar coordinations where the c-axis ligands move to infinity.

¢ Bracket values represent the S = 0 state, which is the polaron in all cases except Ni**2*) where
S = 0 clusters exchange isolate an S = 1/2 polaron.

9 For d,,.xz,yz0rbItals, transfer is by direct cation-cation exchange and should be less efficient in oxides.

@ The polaron is defined as the minority ion. If it donates the electron, material will behave as n-type;
if it receives the electron, it is p-type, regardless of its spin state.

! Low-spin d® (S = 0) requires planar symmetry or a strong tetragonal c-axis distortion.

2 In an ionic model, the transfer electrons are in 6s states, but in a molecular orbital model the 6p
states bacome more stable, as discussed in Section 7.1.

1t is clear from an examination of the orbital occupancies (see Table 2) of Cu'* (filled d shell, 2'%), Ti**, V¥,
Nb>* (empty d shells, d°, and Pb** and Bi** (empty s shells, s°) that an S = O state is fixed. More interesting
situations develop, however, where the ions can assume dual spin conf'lgurations,l2 eg., &, d",and dS. Basedon
the diamagnetic behavior of La>* [Ln'* 0570, [34] and the weak paramagnetism of La*sr*cu*o 241,
the orbital occupancy of Cu®* was Judged to produoe S = 0 state. Because a 3+ charge on the Cu ion would
substantially increase the tetragonal field splitting of the e, states over that of the host Cu?* ion, this finding is
consistent with theory. Furthermore, low-spin Cu** could not explain the magnetic properties of the nearly cubic
La**Cu™0, compound [34]. In addition, E, ,, has been inferred [1] from T, data to be approximately 3 meV in
the Laz__xerCuO , System, in accord with the 3-meV value determined for LaSrCuO A {24], further indicating that
Em:z has been quenched by the presence of zero-spin cations and suggesting that Ehop ~E,. :

12 In general, Hund’s rule of maximum spin polarization can be violated if the crystal-field splitting is large
enough to offset the electrostatic repulsion energy of the unpaired electrons (internal exchange). This occurs
where the cubic splitting parameter Dq is large, usually for high cation valence [33]. Inthe case of d®,anadditional
tetragonal splitting > 0.1 eV is required to relax the aligned S = 1 pairto S =0 in the e, shell.
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Figure 11. Schematic diagram of S = 112 — § = 0 transfers among 3d" group.

Another case worthy of discussion, which will be examined in Section 7.1 and Appendix F, is that
of Ni*+*®, Prevnously studied by Morin [35], Goodenough et al. [36], and Springthorpe et al. [28] in
Li" Ni**, _ Ni** 0, Ni*(d’) favors a low-spin state (S = 172 instead of 3/2), as interpreted from the ferri-
magncnc behavnor atx>0.3[36]. With low-spin Ni**, the attendant Jahn-Teller effects originating from the
single electron occupying the degenerate ¢ _states may become static at lower temperatures, and thereby create
alocal tetragonal component to the crystal field of neighboring N i2*ions, with the expectation of driving them
also into a low-spin (S = 0 instead of 1) state. Such an occurrence would immediately create transfer pairs
of low activation energy that would not only alter the normal conduction behavior with temperature, but could
also permit the creation of superconducting polaron cells. The radical decrease in the slope of log(p/T) versus
1/T data of Springthorpe et al. for T < 100 K suggests that small amounts of low-spin N i** are created at low
temperatures even in this simple cubic material. More compelling evidence of nickel low-spin states was
recently reported in the results Kakol et al. [37] of a series of experiments withLa,  Sr Ni O,, which yielded
L-type semlconductlon with E, hop = 20 meV at room temperature, as well as a superconductlon T <70K.
Because the B-site Ni2* ions experience a strong tetragonal crystal field even before enhancement by Ni%*
Jahn-Teller stabilization, a sizeable population of zero-spin Ni2* jons is a strong possibility.

For the case of Co?*®*), the low-spin state (S = 0) of Co** (d") in octahedral sites was established by
Bongers [27] and Blasse [38]. The occurrence of low-spin (S = 1/2) Co** (d7) is less probable because its
smaller ionic charge leads to a reduced Dgq, therefore covalent transfer with this ionic combination is not
expected. Mixed-valence combinations involving Mn and Fe are also unlikely to provide covalent transfer'
Mn>* and Fe** (both &*) can theoretically assume S = 0 configurations but only in tetrahedral sites,'> where
180-deg © bonding to oxygen ligands is not available.

3An interesting possibility for an Fe* (d%) low-spin state in Y:"':;_J‘Caz"’xFe3+ s_xl"'e‘*xol2 garnet [39] was
suggested by a decrease in magnetizaton at low temperatures, signaling a possible change to the S = 0 state.
In spite of the large ionic charge, however, the Dq value for a tetrahedral site is only 4/9 that of an octahedral
site, and the interpretation that is based on ferromagnetic alignment between high-spin Fe** ions (S =2) in
tetrahedral sites and Fe* ions (S = 5/2) in octahedral sites is more reasonable.
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Experimental confirmation of the incompatibility between antiferromagnetic order (Em > 0) and
superconduction (requiring Em — 0) was clearly established for the Laz_xSrICuO ,and YBaZCu3Oy cuprate
systems [40—42], as shown in Figure 12, where the appearance of a measurable T begins only after the Néel
temperature T, falls to zero at x = 0.05. This value of x is compatible with the prediction of 0.08 deduced in
Section 3.4 [31]. The coincidence of these two effects will be explained later on the basis of large polaron
radii, which determine both the volume of local magnetic frustration and the threshold concentration for super-
conduction. Observed changes in crystallographic symmetry (the tetragonal to orthorhombic phase transi-
tion) could be interpreted as resulting from the onset of magnetic frustration and is often associated with the
appearance of cooperative Jahn-Teller effects in systems where Jahn-Teller ions are present.

The implications of this rationalization for superconduction in the presence of magnetic ions follow
directly: Where static antiferromagnetism exists through long-range spin ordering (T < T,). there can be no
superconduction; where residual dynamic antiferromagnetic exchange remains locally, superconduction can
occur through covalent transfer by two electrons (real-space pairs) moving in correlation to permit the hole
to transfer within the same magnetic sublattice in concert with spin wave fluctuations that satisfy local
antiferromagnetic requirements, as discussed in Dionne [1].
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Figure 12. Experirﬁental verification of the magnetic frustration requirement prior to the onset of superconductivity in
La, Sr,CuO,and YBa,Cu _,0’ systems (data of Budnick et al. [40], Tranquada [41], and Torrance et al. [42]).




4. MOLECULAR ORBITAL CONDUCTION

The implications of the London theory were reviewed in Section 1.2, where it was pointed out that
because of the spatial rigidity constraint, supercurrents could not comprise normal free electrons in a
conduction band. Thus, either the free electrons would have to alter their collective state or bound
electrons would have to be involved. The principal difference between the CET and the theories used
to interpret lower temperature superconduction in metals and intermetallic compounds is that supercur-
rents (or superelectrons) are not formed from a free-electron gas. As proposed in the previous report [1],
activationless transfer of bound electrons between covalent orbitals may be the superconduction mecha-
nism in mixed-valence insulator hosts. This concept departs from the Bardeen-Cooper-Schrieffer idea
that paired electrons (bosons) condense from the free-electron gas and returns to some of the earlier views
of the Londons [9]. Instead of electrons correlated as pairs in & space, the correlation exists in real space
for an entire chain of polarons in the same sublattice, as the associated electrons (or holes) move in
ordered cadence through the covalent bonds of a single giant molecule.

4.1 COVALENT TRANSFER VERSUS THERMAL HOPPING

As pointed out in Section 2.1, the electron hopping mechanism that is responsible for the semiconduction
properties of oxides is energy conserving when the initial and final states are equivalent with respect to the
polaron source.'® Such is the case where the ions represent different valence states of the same atom. Ina
quantum mechanical sense, the carrier can occupy either site with equal probability and no net energy expense
is involved in a transfer. As long as phonons are available to provide activation, the equivalent sites
surrounding the polaron source are in dynamic equilibrium, similar to an electron being shared among atoms
in a molecular covalent bond. An important fundamental distinction between a molecule and the hopping
transfer situation, however, lies in the fact that covalent sharing is spontaneous, while hopping requires
activation. Spontaneous transfer occurs where the covalent state with the electron that is shared among
equivalent ions is more stable than localization of the electron on any single ion.

The difference may therefore be stated as follows: With covalent sharing, the electron exists as a
statistical probability among the ions of a polaron cell, independent of electron-lattice interaction; with
thermal hopping, the electron is transferred between ions through an energy activation from phonons. '

' As background to this topic, the reader is advised to consult the comprehensive discussion of this problem
set forth by Goodenough [43), particularly in relation to the localized versus collective electron situations and
how the covalent transfer integral b might influence not only electrical conduction through band broadening
(and energy gap narrowing), but also magnetic order and lattice elastic deformations. In the basic CET theory,
only the special case of mixed valence is involved (c #0), and it is assumed that the carriers are at least quasi-
localized, with bandwidths that may still be approximated by discrete levels.

15 The concept of polaron hopping in nonsuperconducting Laz_xCax(an" l_an3* JO, wasexamined in detail
by de Gennes [18]. One important difference from the CET model is his use of the parameter b as a hopping
integral rather than a covalent transfer energy. Hopping may have been considered by de Gennes as the only
conduction mechanism here, but it must also be remembered that his work was carried out long before

superconduction in these materials was considered possible.
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Transition-metal oxides have been analyzed according to orbital energy-level structures described by the
point-charge crystal-field model [1]. A schematic diagram showing the alternate conduction mechanisms of
the Cu®*-0%--Cu** is given in Figure 13. Because the discussion was primarily qualitative, this approxima-
tion was quite sufficient. Where the chemical systems are more strongly covalent or where amore quantitative
examination of the covalent component of the orbital stabilization is desired, an MO model can provide
information about the mixing of the individual wave functions that comprise the covalent bond {44-46). In
Figure 14, the formation of bonding and antibonding MO states are adjusted for slightly covalent (ionic
insulators) and covalent (band model) semiconductors and collective electron conductors (metals). If an MO
formalism is adopted according to the analyses in Appendices A, B, and C, the problem may also be
generalized to include both cation-anion-cation and direct cation-cation transfers.
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Figure 13. Essential definition of two alternative conduction mechanisms (shown as single transfers in a ferromagnet
or paramagnet). Hopping requires external activation, while covalent transfer is spontaneous.
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Figure 14. Conceptual description of the formation of a pair of molecular orbital states,and the growth of energy bands
Jrom the transfer integral energy b.

For a purely ionic bond there is no covalence, and the activation barrier between the two equivalent sites
can be represented by Figure 15(a). If covalent stabilization is then “switched on” (assuming the addition of

the necessary orbital overlaps), the bonding energy level is lowered by b/2 with b as the effective transfer

energy integral (see Appendix C) for the case where the two metal cations have the same stabilization energy,
i.e., Ey = E,,.. InFigure 15(c), the MO stabilization is shown to reduce the energy of the hybrid bond level

with the result that the activation barrier is compromised by the energy made available through the covalent
stabilization. Where the transfer integral exceeds the hopping barrier energy [Figure 13(d)], electron transfer
is spontaneous because covalent sharing between ions is a more stable state than localization on an individual
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cation. The threshold for covalent (activationless) transfer is therefore b > Eho , under which conditions the
individual transfer ions may no longer claim stationary valence states but become part of a cation sublattice
of average positive charge in the manner of any quantum mechanical eigenstate.'®
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Figure 15. Pictorial definition of small polaron limit, showing how covalent stabilization overcomes local polaron trap
energy (b2 E hop’-

There is an obvious trade-off between the covalent transfer energy b and the magnetic exchange integral
J= b, 2/28 2U that emphasizes the need for frustration to occur. Because the combined transfer integral b,
> h m all cases with §, > 1/2, where unpaired spins occupy orbitals in addition to the transfer orbital @,
7 and d%), the CET condmon may be stated as

b 2 (b 2/S,*U) [(22-3)S,Fy+3S,] . (18)

16 To the extent that the carriers exist in d-electron energy bands that result from significant covalent interaction
through b, they may be considered as collective according to the Goodenough criteria [43]). Although it is still
convenient to discuss the ionic character of the materials in terms of specific valence states (e.g., Cuz",Cu:“), itis
unrealistic to expect experimental identification of individual ionic species when they exist only in a state of
transient equilibrium, as a wave function that is neither here nor there, but simultaneously everywhere!
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Equation (18) reemphasizes the necessity of F;, — 0 and a zero-spin presence (S, or Sp 0) in the transfer
ion pair. This inequality also defines a small polaron limit in the sense of Holslem, as depicted in Figure
16, because spontaneous polaron movement among equivalent sitesrequiresthat b2 E, . Moreover, itallows
condition for the formation of a large polaron cell for which the carrier becomes itinerant within a range
determined by the strength of the dipole attractive field, causing magnetic frustration (where § = 0) that serves
as a necessary superconducting state.

145351-18

Figure 16. Two-dimensional description of large polaron cells amidst fixed polaron ionic sources.

" This result strongly resembles the small polaron limit determined by Holstein’s model [14], in which the net
polaron trapping energy E [from his Equation (46)] in the absence of magnetic ordering reduces to

E=E -2,
p

where J = b/2, and Ee| = (lfl)(ezhtBaKeﬂ). Note that Ee| varies inversely with the lattice distance q and the
effective dielectric constant K .

There is also a fundamental difference in Holstein’s use of the transfer integral b for the large polaron
case (his band-type solution) in which the covalent energy is treated as a perturbation that reduces the
magnitude of the trapping energy according to [from his Equation (37)]

E, = (€'1210aK )/48b.
In this case, it will be seen that the basic elastic/electrostatic trapping energy (Eel) is not viewed as dependent
on b, instead the influence of covalence enters through a molecular orbital stabilization/destabilization

splitting that raises the effective energy of the carrier state, as analyzed in Section 4.2. The most important
difference, however, arises from the use of the CET mechanism as a competitor to thermal hopping.
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42 QUANTUM MECHANICAL TRANSFER EFFICIENCY

In Appendices A and B, molecular-orbital theory is first applied to the simple case of a metal-ligand
molecule to establish the basic MO functions of the bonding and antibonding dxz_yz - p, O states of Cu*-0%",
In Section 4.1, the requirement for activationless transfer between equivalent polaron sites was defined as
b2E_ . If E _ is largely of magnetic origin, this condition represents the situation where covalent
stabilization exceeds magnetic exchange destabilization, where orbital overlap can permit electron transfer
without intermediate spin realignments.

If the two sites are not equivalent with respect to the polaron source, there is a net energy defined as AE
resulting from the change in Coulomb attractive force ([1], p. 35). In the absence of covalent orbital overlap
(b = 0), thermally activated hopping may transfer electrons by surmounting the energy barrier of the model
in Figure 15; therefore, transport to sites of higher energy requires the energy input of an accelerating field.

With the covalent transfer energy b — E,_, the possibility of tunneling grows until the equivalent sites

merge as a single molecule, with an equal probability of a mobile polaron occupying any of the sites. For

" transfer between inequivalent sites (where AE > 0), the b2 E__ condition is not sufficient. To compute the

transfer efficiency as a function of changing polaron energy, the molecular orbital eigenfunction for the linear

pair of CuO molecules constructed in Appendix C will be used as a building block to establish a general

relation for a continuous chain. From Equation (C-10), the MO state where the transfer electron (or hole)
resides is restated:

V_ = 024 (k, X, + kyx, ) —0.99 (ky X, + kppX,) (19)

where X, and %, are the respective copper 3d2 2 orbitals, and X, and ), . are the oxygen ZpX'yo orbitais that
form the overlaps. For covalent electron transfer between nearest-neighbor cations, the carrier density
reduction factor (or transfer efficiency) at X, Was determined from the occupation probability klzz as [see
Equation (C-11))

- 2
N, = k,205 ~ 1-1/G, . (20).

Consider now the question of successive transfers between large polarons along a continuous chain (see
Figure 17). The polaron energy increase as a function of distance from its source may be expressed as

AE, = -(£/Ka) (-1, @n
where K is the dielectric constant. For the energy increase between two consecutive sites,
AEy.w =—(e¥Ka) [/(y+ 1) - 14} = (¥/Ka) [I(Y+1)) (22)

where v is an integer that counts the number of consecutive transfers of length a away from the polaron source.
From Equation (22), G, from Appendix C may now be generalized according to

G _.,=b_ IAE (23)
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Figure 17. Comparison of small and large polaron energies: (a) carrier may transfer among equivalent sites across top
of band if b 2 E , unless it relaxes to fill state vacated by a hopping electron from bottom of band. (b) carrier may
increase energy quamum mechanically in cumulative steps away from polaron source up to a limit determined by
Equation (21).

From Equations (20) and (23), the transfer efficiency betweeny= 1 and y+ 1 may be expressed as a product series

Y

Myn = H MNyys ™ (l - GIZ)(I ~Gpy)---~ (' ~Gy ys1 ) (24)

IfG,,,, >> 1 (agood assumption for large v), Equation (24) simplifies to'®

v
Myn =1 21: WGy yn=1- 21' AE, yar Py - 25)

18This relation follows from the theorem ﬁ(] + uu) ~ ﬁ(l + xn), where
| 1 :

X
u, =y
;(H—xn)
if x,<< 1
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Because b = (A + A*')sa from Equation (C-2), we can define

= (Ay+AL)s . (26)

To a good approximation, A = A+ AE (where A, isnow relabeled as A ) and b = (2A +AE Iy
+ AE )s with the subscript dropped from s Because A >> AE (m the present case | A, | = 4 eV and

| AE - | = 0.5 eV), Equation (25) can be simplified to

11!,‘7+l Z v, 7+1 /2Als=l 1,7+1 /2A 15 27)

or
n,,~ l—AE /b , (28)

where AE, = (¢¥/Ka) (1 h—1)and b=2A s, and both quantities are treated as positive. [For computational
purposes, a term ~ + 0. 4(e2/Kab)2 will be added to Equation (28) to correct for a small second-order
contribution that was lost in the approximation.]

This carrier reduction factor will later be expressed as a function of polaron density and used to modify
the superconducting carrier concentration in the phenomenological model for determining the critical
temperature. Because n, , isrelated to the carrier wavefunction profile away from the site of minimum energy
(i.e., closest to the polaron source), it also represents the short-range decay of the normalized charge density

! v, l as a function of distance (Figure 18), and therefore, may be used to define the radius of a large polaron
cell that would determine the region of local magnetic frustration.

0

-

r, = LARGE POLARON CELL RADIUS

Figure 18. One-dimensional model of a large polaron chain indicating the merger of carrier density functions / v, /2
to establish a continuous molecular orbital state.
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4.3 LARGE-POLARON ARRAY CONCEPT

From the idea that the carriers reside in the orbital wavefunctions of CuO layers, under the attractive
influence of isolated fixed charges, e.g., Sr** ionsina La>* sublattice, there emerges arationale for describing
the conduction activity in real space rather than employing conventional band theory where the role of discrete
charges is lost in k space.

If the CuO molecules are used as building blocks, the lattice may be divided into polaron cells consisting
of connected CuO molecules arrayed about their respective stationary source charges. As depicted in Figure
16, each cell would contain one carrier that orbits the source charge in the guise of a zero-spin (CuO)* ion, 19
beginning as a small polaron that is transported among equivalent sites by thermal activation where b < E, op’
and then expanding into regions of molecular orbital conduction as E, ' decreases below b through the onset
of magnetic disorder where the polaron carrier is associated with an § = O situation as described above. For
thistooccur,E, _neednotreachitsminimum value E . Only the threshold forMOtransfersh2E, _isrequired
to begin the process of breaking down the magnetic order within the spatial limits of the polaron to be discussed
in Section 5.1.

For complete MO conduction and magnetic frustration throughout the lattice, therefore, it is important
that the polaron cells be uniformly dispersed. A material in which the polaron sources are clustered would
logically have fewer carriers that are isolated from each other and the polaron lattice concept would not readily
apply. To account for the effect of inhomogeneous dispersal of the polaron sources, the concentration x will
be modified in Section 5.1 by a semiempirical ordering factor P, based on the same elementary probability
arguments used originally in Appendix C of Dionne [1].

4.4 REAL-SPACE ELECTRON PAIRING AND ANTIFERROMAGNETISM

With the MO mechanism of transfer now defined, the observed superconduction critical phenomena can
be interpreted. Before this subject is addressed, however, it might be prudent to introduce briefly the
longstanding question of whether a supercurrent is a true superfluid in all cases, i.e., whether the boson particle
condensation characteristic of superfluids is a universally necessary condition for superconduction. The
introduction of this topic at this juncture arises from the nature of the charge carriers to be used in the theoretical
modeling to follow. If the supercarriers must be boson pairs, as widely believed, how is the electron pairing
physically realized in the CET scheme? Or are there situations where the carriers are correlated as individuals?

Ptis appropriate here to remind the reader of the position taken in Appendix B, that localization of the hole
in the CuO MO state could in theory favor the oxygen instead of the copper lattice for a different set of initial
lattice energy parameters. To establish a zero-spin in this case, the cu®* spin (= 1/2) would have to oppose
the single spin of the now-paramagnetic O'~ ion. In terms of the LaSrCuO, compound discussed in Sec-
tion 3.5, valences and spin alignments might be expressed as La“Srz*Cuz*(T)O"(i)Oz'T This model,
however, does not easily explain the magnetic behavior of LaCuO, or the superconduction of n-type
Nd, ,Ce, ,CuO,, to be discussed in Section 7.1.
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The BCS theory of superconductivity is predicated on the existence of conduction band electrons paired
in k space through the mediation of lattice vibrational modes (phonons). Because the two electrons have +k
and -k deBroglie momentum vectors, this device creates a carrier that immediately satisfies the basic
macroscopic local requirement of superconduction, that is p (or k) =0, to yield a spatially rigid wavefunction.
In addition, this concept automatically satisfies the spin pairing requirements (in k space) of the Pauli principle
by assigning aresultant S = 0 to the carrier. The paired electron carrier also provides the 2¢~ effective charge
that is important for interpreting flux quantization and quasi-particle tunneling (Josephson effect) experi-
ments.

In Dionne [1], paired carriers are discussed only in connection with double-charged mixed-valence
polarons. In the basic description of the CET model, the carriers have been treated as individuals that move
in correlation through a molecular orbital chain without concem for the disposition of electron spin states. In
Sections 3.3 and 3.4, where the question of magnetic exchange interactions and their contributions to the
stabilization energy Ehop was examined [1], it was pointed out that internal energy conservation could only
be maintained in the absence of static cooperative antiferromagnetic ordering. Even if long-range ordering
breaks down (above the Néel temperature), local exchange coupling can still contribute to Ehop and the
superconduction can be quenched if b < Ehop.

A refinement to the single carrier transfer model that would account for both the spin coupling
compensation and the paired-charge phenomena would logically consist of double electron transfer events.
The most obvious (but least probable) scenario is the double mixed-valence transfer examined in Appen-
dix B of Dionne [1] for the Cu"’(d'o) - Cus"(ds) + 2¢~ case; here both ions have S = 0, and the question of
magnetic coupling is moot. The more likely double transfer scheme appropriate for an antiferromagnetic
system would involve a two-electron energy-conserved event, where a singly charged polaron carrier (with
S, = 0 that leads to magnetic frustration) moves in consecutive single-electron shifts to the closest
magnetically equivalent site two bond lengths away through the formation of a virtual Cu'* ion as an inter-
mediate state according to

Cu* T+Cu* l+Cu* e i+ T+ s>+l T,

or two individual electrons moving in tandem by simuitaneously trading spin states in the process, as depicted
carlier in Figure 6(b), according to

Cu*T+Cu*l+Cu® m2e st +Cu*l+Cu® T

Reference to the likelihood of some form of local electron pair formation in CuO is also mentioned in
Goodenough’sreview [47]. Ineithercase, the transfer event represents the minimum current unitand involves
an effective charge of 2¢", in accord with the requirements for explaining flux quantization, quasi-particle
tunneling and any other experiments that support the electron pair postulate.

Although it may be argued that this pair scheme could form the boson carriers required by the BCS theory,
the pairs proposed here differ substantially from the phonon-mediated conduction electron Cooper pairs in
k space. The electrons are part of the covalent bonding orbitals, the coupling is of local magnetic origin
associated with spin polarization in real space, and the carriers (individuals or pairs) move as part of a
correlated molecular chain, either in double steps or as real-space pairs exchanging spin states during transit.




In the context of the CET model, there is another situation that may challenge the basic boson requirement
of superconduction. In oxide systems that feature a mixed-valence Ti****) transfer, § , = 0 and the super-
conductor is n type. As a consequence there is neither a real-space requirement nor an obvious mechanism
for pairing to occur. These materials will be examined in Section 7 together with a number of other
superconducting systems.

4.5 POLARON CARRIER STATISTICS

The microscopic view of superconductivity in metals is that boson carriers are created from the free electrons
of the conduction band with energies near the Fermi level. Because the quantum electrodynamic version of the
London theory requires that the carrier ensemble form a single wavefunction (n= | v, |*), the individual carriers
cannot be fermions because of the Pauli principle restriction that only one fermion can occupy a state at one time.
Supercurrents, therefore, would occur in the form of bosons that condense through the attractive action of the Pauli
principle to form a superfluid (boson condensation). In the BCS theory, the bosons are paired electrons with
opposite spins so that the particles or carriers have a double electron charge and zero-spin quantum number (S =
0). If the electrons are not paired, the carriers are fermions and the Pauli principle can only apply as a repulsive
force, with electrons collectively competing for a limited number of quantum states.

1f the ensemble wavefunction is replaced by uniformly spaced polaron carriers moving in unison under
the influence of local electrostatic fields, however, there is also no competition for quantum states; carriers
entering cells occupy states vacated by simultaneously exiting carriers. This situation is analogous to a
vacuum diode without space charge, where each electron emitted from the cathode arrives at the anode before
the nextone is emitted. With only one carrier per cell, the scattering action among fermions with parallel spins
by the Pauli exclusion principle does not produce impedance unless overlapping clusters of cells begin to
create a local Fermi gas.

The CET concept is approached from the classical version of the London theory (Vn ~ 0 instead of
v| v, |2 ~ 0), therefore the carriers are not assumed to be free electrons, and there is no requirement for paired
electrons mediated by phonons or other entities in k space; in fact, there is no requirement for paired electrons based
on purely electrostatic grounds. Instead the individual polarons may be ordered electrostatically by repulsion
within a chain of covalent bonds (the giant molecule concept), and real-space spin pairing in a supercurrent could
be required only to maintain any existing dynamic antiferromagnetic order (e.g., spin waves) along the molecular
transfer paths. Asdiscussed in Section 3.4, the Pauli principle is satisfied if either the polaron has S, =0andmagnetic
disorder prevails where the lattice favors antiferromagnetic coupling in an undiluted state, or the lattice ions
themselves have S, = 0. Where the carriers transfer as real-space pairs with the double electron transfer of an § o
= 0 polaron, the single ensemble wavefunction solution of Ginsburg and Landau becomes applicable because the
limitations of Fermi statistics are circumvented by S = 0 bosons. Because these bosons are local and would
condense in real space, the overlapping necessitated by the k-space Cooper pair correlation is no longer of concem,
and the question of a Schafroth condensation’® is moot. Bose-Einstein statistics could also apply as inthe quantum
boson fluid formalism required by the Bardeen-Cooper-Schrieffer theory. Whether as individuals or pairs,
however, covalent rather than conduction electrons are involved, and the superconduction system proposed is more
localized than collective, particularly in the systems of low polaron density to be discussed later.

20 See for example, J.M. Blatt, Theory of Superconductivity [New York: Academic Press, Inc. (1964)],
p. 129.
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Based on the earlier discussion of the nature of superconductivity, the question of carrier statistics alone
poses a fundamental paradox. According to the Londons' [9] phenomenological assessment discussed in
Section 2, the superconducting state requires that carriers move with spatial ordering (the Vn_' =0 constraint).
Such a constraint implies order as opposed to randomness, and localization as opposed to collectiveness.
Although statistics are required to describe quantum state occupation probabilities of collective systems, does
it follow that statistics of any kind can play arole in anideally ordered system? Does it matter whether particles
are fermions or bosons if they are isolated, or even localized in an ordered chain, where there is no competition
for quantum states? One further question follows directly: If electron pairing, as evidenced by the apparent
double-electron charge phenomena, does not result from a requirement to satisfy boson statistics, can there
be superconduction situations where pairing is not present in any form? Or does some form of spin pairing
occur simply as part of the Vns = 0 ordering requirement?

Whether the electrons are individual or paired, however, the mechanism of bound electron transfer is the
same, involving part of the fundamental binding of the crystal lattice — the covalent bond.
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5. SUPERCONDUCTION ELECTRICAL PHENOMENA

Up to this point the emphasis has been on defining the conditions for a covalent transfer conduction
mechanism that can coexist with thermally activated hopping. To explain the origin of supercondu-tivity, the
discussion continues in two steps: First, threshold conditions for the zero resistivity observed below the
critical temperature will be described, and second, the corresponding resistivity behavior above the critical
temperature will be examined.

5.1 CRITICAL TEMPERATURE AND POLARON CONCENTRATION

Where covalent transfer is possible, zero resistance may be established when a threshold combination
of polaron density and dispersal permit the formation of a continuous molecular chain [1]. Above a critical
temperature, thermally activated hopping increases to the point where the effective transfer carrier population
falls below the required minimum value. According to the original model, Equation (14) in Dionne [l]; the
instantaneous population of polarons engaged in random hopping is

n, = Nexp(-Epo/kT) (29)

where N is the mean polaron density, and the exponential factor represents the probability of a hopping event
as dictated by the familiar law of diffusion by thermal activation. Participation in covalent transfer by the
remaining polarons?! is jointly dependent on the dispersal of polaron sources (to satisfy the ordering
requirement) and the degree of covalence. The maximum density of superconducting polarons is defined as

ng = NPN[1 —exp(—EhopIkT)] . (30)

where N is decreased by the transfer efficiency 0 <M < 1 (previously assumed to be unity [1]) and the polaron
dispersal factorO< P < 1.

The statistics that are required to describe state occupancies of collective electrons are not invoked here
because the model involves only isolated polarons. Each mobile polaron (which may move through paired
electrons or in double transfer events) is an individual carrier that does not have to compete for an available
state; when it moves into an adjacent cell it inherits the environment of the exiting polaron that is being
expelled through electrostatic repulsion. The basic concept is stated as follows: Where orbital overlap
between mixed-valence cations satisfies the transfer condition (b 2 Ej, ;) in a system where polaron cells can
merge into a single MO chain, superconduction can be an operating mechanism; superconduction, therefore,
can be destroyed by thermal excitation of the electrons out of their bonding orbitals into the semiconductor
hopping mode.

21 For the sake of completeness, a third group of localized polarons may be defined as n' =N —(n,+n),
which would be zero if both n and P were unity.
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In terms of fractional populations, with x as the nominal polaron concentration per chemical formula unit,
Equation (30) may be expressed as

XJX = nJSN g =[] —exp(—Ehop/kT)] . 3D

where x_ = N\Px is the effective polaron concentration at T = 0. It is instructive to recognize the statistical
meanings of the three factors in Equations (30) and (31): 1 determines the relative occupation probability (in
a quantum sense) of the electron being present at the junction of the two polaron cells in order to undergo
covalent transfer, P is the polaron isolation probability, and the bracketed factor is the probability of the
polaron carrier not being in the process of thermal activation.

5.1.1 Transfer Efficiency n

In the mixed-valence p-type Cu perovskites, it was concluded from the MO calculation that Ny =
1-AE, 'Y/b [see Equation(28)]. For a one-dimensional approximation of a polaron carrier between two source
charges separated by R and the carrier a distance r from the nearest source,

AE, = —(eYKa)1 + -1y —y! — ("1 , 32)

where the reduced distances Y=r/a and I = R/a, with lower limits of 1. The repulsive energy between the
carriers is assumed to be fixed because the fixed source charges are stationary and the supercurrent occurs
through mutual repulsion of the mobile charges with the correlated polarons retaining their separation as they
propagate.

For a=4 A (the approximate Cu-O-Cu bond length) and K = 16, forexample, AE, ¥ is plotted as a function
of yin Figure 19 to illustrate the polaron electrostatic potential barriers for various values of T". A threshold
of b/2 based on h=0.43 eV corresponding to the value of b z_ 2 for CuO determined in Section 3.3, is included
to suggest the appropriate range of I" values for this system.?> The Coulomb energy peaks at y=T/2, half the
reduced distance to the junction between cells, therefore the energy barrier AE,,,,, at the cell boundary may
be expressed as

AEq,, = -(e2/Ka)[1+ (T-1)-! - 4] (forT22) . (33)

Because the concentration x = a/R (which also applies in three dimensions), I" = 1/x, and Equation (33) may
be written in terms of the polaron concentration,

AE,.. = —(e*/Ka) [(1-2x)2/(1-x)} (forx<0.5) . (34)

22This value of b is chosen in preference to the calculated b = 0.67 eV that is determined from the MO model
developed in Appendix C, although the two values are close enough to produce qualitatively similar results
throughout this text. Although b is a negative energy, the minus sign is being dropped throughout this text
because only the magnitude of b is used in any calculations.
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Figure 19. Large-polaron Coulomb potential AE y Versusy, for different reduced polaron source separations I', based
on Equation (32), for K =16.

A four-polaron relation that comes closer to the actual geometry of the layered perovskite-type compounds
was derived in Dionne [1]; an abbreviated two-polaron version that produces similar computational results
is expressed as

AE_,, = —(e}/Ka)[2(1 + T2/4)-12_ (1 + T2)-12 _ 1] (35a)

or

AE_ ., = —(eX/Ka)[4x(1 + 4x2)~12 _ x(1 + x2)~12 _ 1] . (35b)

Through Equations (28) and (35) the transfer probability as a function of concentration can be
summarized as

N =1-AE /b . (36)

In Figure 20, Equation (36) is plotted as a function of I'/2 for b=0.43 eV,a=4 A, and K = 16, to illustrate
a typical variation in 7| for the high-T_ perovskites.

5.1.2 Isolation Probability P

For the isolated polaron concept to apply, a high degree of dispersal must exist. The MO cell model has
meaning where the isolation probability factor P — 1, and to the extent that P is less than unity, the effective
density of potential supercarriers is reduced accordingly. If conduction takes place by linkages of these single-
carrier cells, it follows that Pauli principle concemns become important where cation clustering causes cells
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to overlap, thereby forcing multiple carriers to compete for states within the same regions of the lattice,
invoking the need for Fermi statistics.
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Figure 20. Transfer efficiency 1 as a function of I'2, for K = 16 and b = 043 €V.

The estimation of P must be adjusted according to whether the smallest transfer event involves one or
two electrons. According to the rationale developed earlier (Dionne [1], Appendix C), it follows that

Py 1 - 2Bx for0<x< 172 (single transfers) , (37a)

or
1 ~2fx - 2B'x = 1 — 4fx for 0 < x < 1/3 (pairs) , (37b)

Py

where the variable term in the equation for P is the probability of a second polaron occurring adjacent to the
initial one, and B > 0 is a dispersal parameter that is unity for a random distribution, less than unity for higher
dispersal, and greater than unity for clustering.23 The factor of 2 in Equation (37a) accounts for the removal
of the pair of adjacent polarons as possible supercarriers. In the case of P,, the two variable terms represent
the probability of a polaron source appearing at least once on two consecutive sites from the initial polaron.
For this simple first approximation, we assume that f = B’ (the respective dispersal parameters for nearest and
next-nearest neighbors).

23This model replaces that of Dionne [1], Appendix C, where —1 < a < 1 was defined as the dispersal
parameter.
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5.1.3 T, and Threshold Carrier Concentration x,

From Equation (31) the condition for the onset of zero resistance may be set by defining a polaron transfer
threshold density n, (or concentration x,) for the completion of a current path. As discussed earlier, this
threshold is contingent on a number of events taking place, principally the dipole alignments of the itinerant
polarons and the presence of at least partial magnetic frustration. Assigning the critical temperature T . to the
threshold concentration condition,

X/xefs = n/Negs = [1 —exp(~Epgp /kT,)] (38)

and the basic relation for critical temperature may be expressed as

T, = EpgpltW 39)

where W =In[1 = n/N ¢! = In[1 = x /X571 ™! = X /xogr for x, << x g If B << 1and bis large, nP — 1 and
Xeff = x. Equation (39) may then be reduced to the ideal case of T, = (Ehop lk)(x/x,), with W = x/x. Thus,
high T, values for large Ejpgp, but also for large polaron concentrations x and small thresholds x,. This last
condition may be exploited by large b values, which also serve to raise 1| and optimize the effective carrier
concentration, i.e., x.¢r — x. Therefore, a simple rule for obtaining high T, values would be high Ejq, (small
K) and large b (large covalent stabilization energies). According to Equations (38) and (39), T, represents
the temperature at which x; = x,. As x varies, the function nPx =n(1 —4fx)x follows a parabolic-type curve,
reaching a peak at xp,,, = (8f)~!.

~ If small threshold carrier concentrations lead to large T, values, it follows that large polaron radii are the
principal reasons for the high-T . oxide superconductors. Analogous to the small polaron b limit introduced
by Holstein [48] i.e.,h < Ehop, a large polaron b range will be defined as Ehop <Sh<2AE, ras depicted in Fig-
ure 17.24 From this concept we may set an effective radius of isolated polarons from the definition of AE,
in Equation (28), according to

T = 2000 - 1), 40)

24In a quantitative sense, the polaron radius is only figurative. As defined here, it means that the displacement
of the polaron carrier at which the Coulomb destabilization energy step (AE) becomes equal to the covalent
stabilization (~ b/2). In terms of the simple quantum mechanical approximation used to estimate 1), the polaron
wavefunction decays relatively according to Figure 20 and reaches aminimum at AE ., but only reaches zero
if AEp,, 2b. An absolute polaron radius would therefore be defined by b= AE| ,, but an effective radius that
isconsistent with the onset of superconduction is hb=2AE, .y Morehelpful from aconceptual standpoint would
be an exponential dependence in which the radius appears as a characteristic decay length, in the manner of
a penetration depth or coherence length, but unfortunately this simple model of the CET mechanism does not
readily permit this.

From Holsteiﬁ’s work [14], it is worth noting that the effective length of a large polaron in a linear chain
may be approximated by
L, = a (2bna’/e*K o) ,
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where Q = ¢2/Kab. From this definition it follows that the reduced threshold polaron separation l"p would be
twice the reduced radius (or 27,,), and the transfer threshold concentration in a perovskite could be approxi-
mated by

x = 1T, = 12y, = 2Q - 1)/4Q. “4n

Note that within the approximations of this simple model, ¥, — e in Equation (40), and x, — 0 in (41), where
2Q — 1 £ 0. This result is not unreasonable, however, when one recalls that a second condition for
superconduction is the breakdown of long-range antiferromagnetic order. In effect, x, would be the larger of
the x value at which T,— 0 and the result of Equation (41).

5.1.4 Polaron Concentration xg for the Ty, T, = 0 Condition

Because the polaron dimension also influences the spatial extent of local magnetic frustration discussed
in Section 3.4, it follows directly that the Néel temperature would decrease monotonically with polaron
density and reach zero where the polaron cells merge or percolate. As a consequence, a minimum
concentration for superconduction at T, = 0 (and a maximum for magnetic order at T, = 0) will be defined as

xo = MPlx, , 42)

with 1 and P evaluated at x = x,. Because NP < 1, x, will be greater than x,, particularly in the oxides
if N is small due to a larger polaron radius. In the data to be examined next, x, ~ 0.04 and x,, ~ 0.075,
consistent with the range of minimum polaron concentrations (0.02 < x, < 0.09, from various publica-
tions) that also represent the point of total breakdown in static magnetic order (T, = 0) as verified by the
data in Figure 12.

5.1.5 Interpretation of T versus x Data

To test this theory, Equation (39) with P = P, is fitted to experimental results for high-temperature
superconducting systems. In Figure 21, T, versus x data from the Laz_xSrXCuO.‘_y system (with tetragonal
Cu-O,4 complexes), for samples presumed to have oxygen deficiencies [4], i.e., y > 0, for x > 0.2, and
for specimens {42] with y = 0, match the calculated curve for Ehop = 2.5 meV (close to the 3 meV value
reported for LaSrCuO, by Goodenough et al. [24]), and B = 0.7 (pair correlated). To illustrate the source
of the parabolic-type relation?S between T, and x, x is plotted as a function of x for T = 0 in Figure 22,
where the T, = 0 points occur at x (0) = x,= 0.037 for which x, = 0.075 and 0.31. At x = 0.2, the observed
point of maximum T in Figure 21, x, = 0.068. It therefore follows that this excess of supercarriers over
the threshold minimum at x, = 0.037 is what allows superconductivity to survive to T = 40 K. These
parameter values for the Laz_xerCuO,,_y system will be used later in discussions of magnetic field and
current density properties.

25 Another possible contributing factor to this peculiar curve shape is the temperature-dependent population
of the Cu3* low-spin ions, which may be described in terms of a two-level Boltzmann function according to
Xefp = X[1 + exp(~A,/kT)], where A, is the net low-spin state stabilization energy. For the Cu2+3+)
combination at least, it may be assumed that x ¢ = x, because A, >> kT, as evidenced by the Goodenough
et al. results at room temperature [24].
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Figure 21. Critical temperature T_versus x for La,_Sr.Cu0,, La, Sr CaC u,04. and YBa,Cu 30y (where y has been
converted o x using the linear model y = 025x - 1.5); data of Tarascon et al. [4], Torrance et al. [42], Cava et al. [49],
Johnston et al. [50], and Batlogg et al. [51].

Recent results [49] from a related series Laz_erzCaCu206 with pyramidal Cu-O4 complexes that also
features fixed polaron sources shed additional light on the origin of T.. For z = 0.4 (equivalent to the
same polaron concentration of x = 0.2), a maximum T_ = 60 K was determined. As indicated by the
dashed curve in Figure 21, this rise in T, from 40 K may be explained by an increase in E,, from 2.5
to 4 meV, with all other parameters unchanged. In Appendix D, the higher value of E,, is discussed
in terms of changes in crystal-field stabilization energies as the Cu coordination is truncated from a
tetragonally distorted octahedron (Cu-Oy) to a square-based pyramid (Cu-O).

For the YBaZCu:,Oy system with maximum T_ = 95 K, data of Johnston et al. [50] are compared in
Figure 23 with a calculated curve based on the linear relations between x = 0.25y - 1.5 derived in Dionne
{1] (p. 83), for whichx=0.25at y=7 and x = 0 at y = 6. (For comparison with the 40- and 60-K systems,
the calculated curve is also plotted as a function of x in Figure 21). Because the superconduction occurs
in the Cu(2) planes with pyramidal O coordination, Eyp= 4 meV, as discussed in Appendix D, x,= 0.035,
and B = 0.57, which suggest improved polaron dispersal through the less-fixed oxygen vacancies as
sources of polarons. As shown in Figure 22, the maximum x, = 0.9, occurring at x = 0.25. The
anomalous behavior of the T, data beginning at y = 6.8 suggests that the x versus y relations depart from
linearity, reflecting a more rapid decrease in the pyramidally coordinated Cu3*(2)-05 concentration with
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oxygen vacancy density, possibly due to structural changes caused by depletion of anions in the
Cu(1)-0, linearly coordinated sublattice. Such an occurrence is also suggested by the anomalous dip in
the room temperature p versus T data that comresponds to the T, drop observed by Batlogg et al. [51).

0.10 ! ! ! ! =3
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Figure 22. Supercarrier concentration x(0) versus x for the La, Sr.CuO, and YBa,Cu 30y systems of Figure 21.
T.=0at x=0.075 and 0.31, indicating the th. »shold for x(0) = x,~ 0.035 to 0.04 in both cases, with corresponding
percolation radii of about 14 transfer lengths (~ 50 A).

The relative amounts of Cu**(2) and Cu'*(1) as functions of y were determined by Brown [52] using
the bond valence sum approach (which is compared with the original linear predictions of Dionne [1] in Section
7.1, where additional details of the chemistry and crystallography of this unusual system are examined). Froi i
Brown’s results for x, corresponding T, values were calculated from Equation (39) with the same parameter
values that were used above, and are also plotted in Figure 23, where agreement with the Johnston et al. [50]
data is close enough to serve as further verification for the validity of Equation (39).

In both of these Cu perovskite-related systems, b is again assumed to be 0.43 eV, and K = 15.6, a value
typical for oxides containing these cations. For these values, x, = 0.035, and the corresponding polaron radii
become about 14 transfer lengths, or approximately 50 A. The significance of this radius value and how it
relates to the coherence length, which has been measured in these materials [53] as 34 A (in-plane), are
discussed in Section 6.7.
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Figure 23. Comparison of theory with T versus y data from YBa,Cu _,Oy. Theory is based on the linear valence model
developed in Dionne [1]; data of Johnston et al. [50] and Batlogg et al. [51] reflect the nonlinearity determined from
the valence hond sum analysis of Brown [52].

The more complex layered systems (see Section 7.1) are less amenable to this type of analysis,
because polaron sources are not as well defined. For example, T, of Bi>*,(Sr2*,Ca?*),[Cu®*,_ Cu**, 1,04, 5
reaches a value of 116 K for x = 0.33 [6]. As plotted in Figure 24, where a family of T, versus x curves
is presented generically for Ehop =4 meV and x, = 0.035 with b ranging from O to 2, this higher tem-
perature composition would have a dispersal parameter B = 0.45. It should be pointed out that some of
the Cu ions have square-planar coordination (Cu-O,), which may result in Ehop > 4 meV (see Appendix
D). Another potentially important consideration for these compounds is the multivalent capability, e.g.,
T1'* or T13* ions, which may serve to explain the lower value of the dispersal parameter .

From these projections, some preliminary conclusions might be considered. Because Madelung
energy minimization would dictate that dispersal of polaron sources should be no worse than random, B
should be < 1. To satisfy this condition, P, defined in Equation (37b) must be used to interpret foregoing
data, thereby indicating that double transfers are more likely, as single transfers would dictate the use of
P, from Equation (37a) and lead to values of B > 1. If the carriers transfer as pairs, in accord with the
accepted convention of superconductivity and the discussion of magnetic contribution to Ehop in Section
3.3, it follows that the maximum effective polaron concentration would be x = 0.33 (instead of 0.5 for
individual transfers), as indicated by the dashed-line extrapolations that show declining T values in Fig-
ure 24 for x > 0.33. From the P = 0 curve, this limit of x would therefore impose a maximum theoretical
T, of about 330 K. Values of £, clearly descend to the millielectron volt range in these superconduc-
tors, consistent with the idea that the elastic trapping energy that remains after magnetic frustration may
be represented by the Debye energy, reduced by the coupling constant a < | (see Section 3.2).
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Figure 24. Projected T versus x curves based on CET theory over the range of 0 < B< 2 for individual carriers and 0
< B < 1 for pairs. Dashed curves indicate that the “real-space” pair model does not apply beyond x = 0.33.

5.2 RESISTIVITY VERSUS TEMPERATURE AND COMPOSITION

For transition-metal oxides, there are two mechanisms for electron transfer between mixed-valence
cations — one permitted by covalent bonding and the other stimulated by lattice vibrations. In compe-
tition with the orbital transfer mechanism, normal conduction results from the thermally activated diffu-
sion of an electron from its orbit on one cation to a higher-valence cation in a neighboring lattice site.
Because the exponential activation factor causes the resistivity to decrease with temperature, mixed-
valence oxides are considered to be (hopping) semiconductors, but differ from conventional collective
carrier (band-model) semiconductors in the very short lifetimes and diffusion lengths of the hopping
electrons that remain relatively localized to their polaron sources.

5.2.1 Origin of the Metallic p-T Slope

For metal oxides with mixed-valence cations (e.g., Li'* Cu?*,_, Cu** O), a measurable electrical
resistivity exists and was determined by Heikes and Johnston [20] to obey the relation [from Equation (10)]

p= (New™' ,

= (KT/N&’D) exp(Ey,o,/kT) , (43)
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where U = (eD/kT) exp(—Ebop/kT) is the activated mobility, N = x(1-x)/V is the effective polaron density
expressed as the ratio of nominal concentration x to formula unit volume V, which is reduced to assure
that 0 € x £ 1. The factor 1-x represents the probability of hop completion at a given site, because the
incidence of a completed hop is dependent on the availability of receptors [15], and eD/kT is the familiar
Einstein relation for diffusion mobility. The diffusion constant D = dzvhop, with d as the diffusion length
(average hop distance) and Vhop 25 hopping frequency, related the Debye frequency. The symbols e and
k represent the electron charge and Boltzmann constant, respectively. Because d should increase from
a (the minimum distance between transfer sites) with the concentration of trapping centers, i.e., the
average hop distance will increase with increasing competition for available receptor sites, the approxi-
mation d = aF(x) = a(1-x)~! will be used over the range of interest in this discussion.?6 As a result, Equation
(43) is expressed as

p = [CAT(1-x)/x] exp(Epop/kT) (44)

where C = V/e2a2vhop. [For YBayCu30, V = 1.5 a3; for La,_,Sr,CuQ,, V= (141N2)a3 = 1.7 a3)

The appearance of a resistivity minimum at T,;, = Ehop/k that separates insulator/metal regimes may be
determined from the dp/dT = 0 condition applied to Equation (44). If Eyq, << kT, Equation (44) may be
simplified to the linear relation

p = [Ck(1-x)/x]T + CEhop( 1-x)/x . (45)

The metallic slope of the p versus T curve is readily apparent in Equation (45), and its presence has been
discussed in connection with magnetic spinels as well as the simple oxides [20,21,54). Figure 25 is plotted
from Equation (45) to illustrate the p minimum and its relation to the asymptote slope and p-axis intercept p; .

5.2.2 Mixed Normal and Superconduction Resistivity (T > T,)

If one assumes that large-polaron cells also represent volumes of p = 0 in the normal state prior to the
carrier ordering that occurs with the condensation to the superconducting state, a possible refinement to this
model would treat these zero resistivity regions as local short circuits. To estimate the resistivity above the
critical temperature, consider the elementary approximation of a cylinder of length L and cross-sectional area
A shown in Figure 26. If all of the uniformly dispersed cells are grouped in two separate regions, i.e., as two
resistors of lengths L, and L in series, the total resistance would be approximated by

R=pL/A = pL/A+plLJA (46)

261t may be determined from elementary probability theory that the most probable hop distance (i.e., diffusion
length) for polarons in a one-dimensional chain will be increased over the minimum distance by a factor Fix)=
3 x*! = (1-x)~!, where n 2 1 is an integer. The dependence on (1 )~ serves to confirm and explain the
empirical result of Miyata et al. [54] for mixed-valence ferrites.
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Figure 25. Generic plots of p versus T for E hop = 0 and 10 meV, defining relations for T, asymptote slope ap/oT / -
and intercept p,.
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Figure 26. Simple model of the segregation of superconducting and normal regions for the purpose of estimating
electrical resistivity above the transition temperature.
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with p, =0,

©
n

PalL/(Ly+ L)) = py(1 ~LJL)
or

= p(1-VJV) . 47
V and V are proportional to N and n,, respectively, from Equation (30), and (47) becomes

p = [CkT(1-x)/x]) NP + (1 -NP) exp(E}o/kT)] . (48)
If Ehop << kT, Equation (48) may be approximated by the linear relation

p = [Ck(1-x)/x]T + (1 -MP)CEpop(1-x)ix 49)

which reduces to Equation (45) where nP — 0. Thus, the slope remains the same, but p; decreases with the
increase in covalent transfer probability. Inthe limiting cases of nP =0 (no covalent transfer) and NP = 1 (ideal
transfer) respectively, Equation (48) reduces to:

p = [Ck(1-x)/x]T exp(EhopIkT) (hopping semiconductor) (50a)
and
p = [Ck(1=x)/x]T (linear metal) . (50b)

Note that an ideal superconductor has no hopping effects present with a linear p versus T curve that passes
through the origin. In practical cases, only metals withnP ~ 1 and Epop ~ 0 are likely to approach this limit.

5.2.3 T, and the Insulator-Metal Phase Transition

A family of generic plots of Equation (48) is given in Figure 27, where the demarcations between
semiconduction and metallic regimes are seen to occur at Ty;,, Which varies as a function of NP according
to the relation determined by differentiation of Equation (48),

NP1 -MP) = (1 - Epop/kTmin) €XP(Epop/kTmin) - 1)

This transition temperature would not be expected to appear below 1000 K because Ej,q, > 0.1 eV for
hopping semiconductors with magnetic order. From Equations (39) and (51), arelation between T.and T ,;,,
may be pointed out. The minimum in the p versus T curve can be observed only where T,. < T.;;,, and this
threshold condition is expressed as

nPI(1 -nP) = (1 -W)exp(W) . (52)
recalling that Epo /KT, = W = In(1 - x/mPx)~!.

Unfortunately, the variables nP and Emp/kTmi,, in Equation (51) cannot be readily separated. A direct
comparison with W is not convenient because this equation cannot be solved without an iteration procedure.
Insight may be gained, however, if one considers that small vaiues of 0P, i.e., for a nonideal superconductor,
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lead to higher T, and lower T, values; in addition, T . is further reduced where the polaron density approaches
the threshold, x/x — 1. As a consequence, observation of minima are most likely where W is larger through
low polaron dispersal (NP << 1), particularly for small x.

p (Arbitrary Units)

L Jd |
0 50 100 150 200
TEMPERATURE (K)

Figure 27. Resistivity versus temperature for 0 S WP < 1, showing the influence of covalent transfer on the lowering of
Tmin and p i

5.2.4 Interpretation of p versus T Measurements

Earlier validation of this p versus T model was established with the Li,Ni,_,O system in a study of
Ni2* — Ni3* + ¢~ hopping cond':c*ion [S5]. To compare theory with experiment for the high-T, materials,
the data curves of Tarascon et al. [4] for the La3*,_,Sr2*,Cu2*,_,Cu3*,0,_, system with x=0.10, 0.15, and
0.225 are plotted in Figure 28 with the calculations based on Equation (48). Values of C = 16 mQ cm/eV,
E,,op =2.5meV, and B = 0.7 were found to provide a good fit. A similar agreement between theory and the
data of Cava et al. [5] for Y3+Ba2"2(Cu2"’3_3xCu3+3,)Oy for y = 6.9 (representing an average x = 0.267 for
charge balance) is shown in Figure 29, where the portion of the curve below T is extrapolated to show the
minimum. In this case, C =9 m{Q2 cm/eV, Ehop =4 meV, and p=0.5. Eor both structures, a = 4 A, and the
C parameters require Debye frequencies 2rtvp =@, ~ 104 rad/s. (For double hops, a = 8 A and the minimum
diffusion length would therefore decrease, lowering the corresponding value of @/, by a factorof 4.) Itis also
significant that the ratio of the C values, 16:9 = 1.78, is in close accord with the corresponding ratio of lattice
cell volumes, (1+1/2):1 =1.71. Asdiscussed in Section 5.3, the values of C are related to the microstructure.
Because the specimens discussed above were polycrystals, the effects of randomly oriented grains are
probably responsible for increased average diffusion lengths and higher C values.
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Figure 28. Comparison of theory with experiment for the La, Sr.CuOsystem (data of Tarascon et al. [4]).
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Figure 29. Comparison of theory with experiment for bulk polycrystalline and oriented film YBa,Cu 0, (data of Cava
etal. [S] and Westerheim et al. [61]).
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Forthe La,_,Sr,CuQ, system, aT versus x phase diagram is proposed. In Figure 30 the material is either
superconducting or metallic for T > Ehop/k' Atlarge x, where Epo, = E,, the insulating regime is at quite low
temperatures; at small x, the boundary of this region rises sharply with the increase in Ej,,, as antiferro-
magnetic order sets in. Where NP << 1, a small range in which the material can be superconducting at T=0
begins at x = x; , becomes insulating over a short T interval, and then reverts to metallic as T continues torise.
This effect represents the situation where a minimum appears in the p versus T curve described above.
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Figure 30. Proposed phase diagram for the La, Sr.CuO, system.

In the x = 0.10 curve of Figure 28, a minimum in p appears at T = 60 K, together with evidence of two
critical temperatures. This result suggests the presence of at least two phases, one of which has Ehop >kT,.
The case of superconductors with multiple phases is examined next.

5.3 RESISTIVITY OF MULTIPHASE SUPERCONDUCTORS
5.3.1 Cylindrical Network Model

For practical systems, particularly polycrystalline specimens, phases with varying x that give rise to
regions of different T,. values can produce a spectrum of p versus T curves [56,57). Consider the multiphase
network depicted in Figure 31, where semiconducting regions (resistivity pg) are shunted consecutively by
different superconducting regions (p,) of varying sizes. If the fractional cross-sectional area of the py regions
is f, [= Ag/(Ag + A,)], the effective resistivity of the network becomes
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P=2",g PPy
T (1-1,)e0 + .0,

(53)

where g, =L, /Land ¥ g,= 1.
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Figure 31. Cross section of a multiphase insulator/superconductor network.

In Figure 32, model curves based on Equations (48) and (53) for a two-phase system covering the range
of 0 <f< 1 are presented for specimens with the following parameter values: For py, Ehop(o) =35 meV and
xo=0.06 (partially frustrated, but not yet superconducting because xo < x,), and for p, Epop(!) = 4 meV and
x)=0.25. Based on these results, a partially superconducting material will retain its metallic slope until the
amount of semiconducting phase exceeds 90%. Because the p-axis intercept of the high-temperature slope
is defined in terms of superconductor phase parameters (it may be shown that p; = CEhop(')(l—xl)/xl (1= for
slopes in the metallic regime), the intercept may serve as a qualitative diagnostic tool for characterizing the
macroscopic homogeneity of specimen. Where the intercept is negative, as in the case of the YBa2Cu30y
data of Cava et al. [5], there is the suggestion that trace amounts of even higher-T,. phases may be present,
perhaps regions with p — 0.

An example of the departure from metallic slope with the presence of a large semiconducting region is
seen in the comparison between single-crystal Pb,Sry(Dy,Ca)CuiOg and multiphase polycrystalline
Pb,Sr,(Y,Ca)Cu;Og results {58] that are reproduced in Figure 33. In accord with the above predictions, the
polycrystal has not only an insulator slope with <2% effective superconductor, here modeled with two
different T,. phases, but a resistivity almost an order of magnitude greater than that of the single crystal
specimen with about 35% superconductor. With Cu-Og pyramidal complexes in the Cu(2) sublattice, similar
to the structure of YBa;Cu307, the Ej,q, value for the superconducting phase was also chosen as 4 meV. A
slightly higher value of B (= 0.6) or lower value of x; (= 0.15) could account for the lower T.= 50 K. An
alternative mode of presentation is demonstrated by the curves of Figure 34, normalized to p at 300 K. From
the data [59] for (Tl, 5Bi0_5)(Ca|_zYz)Sr2Cu20y in Figure 35, it is reasonable to suggest that substituting
Y3+ for Ca2* ions may be more a cause of inhomogeneity than a source of carriers.
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Figure 32. Sample resistivity versus temperature plots of a two-phase YBa,Cu 30y system over the range 0 < f< I.

145301-53

100 L] T T T T T T T T T T 10
| - gA;%tal. y Pb,Sr,(Y,Dy,Ca)Cu,0,
80 | C =185mQcm/eV ds
E o) =30, 4 meV
F x  =0.065,0.1
§ o ¢ §
(=] (=
E | 10 4 E
Q Q
40 4
Ep? = 40,4, 4 meV
- Xpy2 =0043,014,022
20 |- -~ 2
| L 1 1 1 | 1 0
0 50 100 150 200 250 300
TEMPERATURE (K)

Figure 33. Theory fit to experiment for Pb,Sry(Dy,Ca)Cu;0, single-crystal (f = 0.65) and Pb,Sro(Y Ca)Cu;O04
polycrystalline (f = 0.98) specimens. Because grain boundary and orientation effects are absent, it is likely that the C
parameter is smaller for the single crystal (data Cava et al. [58]).
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Figure 34. Curves of Figure 32, with p(T) normalized to p(300).
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Figure 35. p(T)Ip(300) versus T curves Jfor the (Tl sBiy sNCa ,_zYz)SrZCuZOy family of mixed-phase superconduc-
tors (data of Huang et al. [59]).
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5§.3.2 Microstructure Effects

As discussed by Kingery [60], the effect of grain boundaries in ceramics is reflected in the diffusion
constant and is usually of concem where the mean-free-path length is comparable to a grain dimension.
Because the diffusion length is generally much smaller than a grain diameter in hopping electron semicon-
ductors, the influence of grain boundaries appears as anomalous decreases in D over very short lengths, i.e.,
the grain boundary regions, and is usually ignored where p > 103 Q cm. Where the resistivity is not high,
however, as in the case of the high-T . oxides with very smail I:',mp values, the impedance introduced at grain
boundaries is of greater concern.

In the foregoing interpretation of data, questions of resistance caused by scattering at boundaries between
crystallographically misaligned grains were not considered. Because both grain orientation and lattice dis-
continuities at grain boundaries would lower carrier mobility through local reductions in diffusion length d,
the semiempirical C parameter should be smaller for single crystals or highly oriented films. An example of
this tendency is shown in the lower resistivity curve in Figure 29, where data [61] from a highly textured
(c-axis oriented) YBa;Cu40, thin film (thickness = 2000 A) sputtered onto a LaAlO; substrate are compared
with the results for a polycrystalline bulk specimen of similar composition. In this case, p is about three times
smaller than that of the corresponding bulk polycrystal.

A simple modification to parameter C that may semiempirically account for the anisotropy effects in
these low-resistivity granular oxides may be constructed as follows:

C = (Cocosp)) [(1 — 8gp/Bg) + (Bgp/B)Dyg/Dgp)] (54)

where C is the perfect-alignment limit, @ is an orientation angle, Sg,,ISg is the ratio of effective thickness of
a grain boundary region to average grain diameter, and Dg,,/Dg is the corresponding ratio of diffusion con-
stants that is also dependent on (cos@). The (cos®) factor outside the square bracket corrects for the general
misalignment effect that would result in a longer average conduction path, i.e., effective specimen length. For
ideal alignment, ¢ = 0, Dg,/D, = 1, and C = Cy. Because (cos®) = 2/r for random orientation, an increase
in C of about 50% might be expected regardless of microstructure details. From Equation (54), the principal
contribution of grain boundaries would come from the (Gg,,ISg)(Dg/Dg,,) term, which represents a small
number multiplied by a large one, and one may assume that grain dimensions would have a detectable
influence despite 84),/5, << 1.

5.4 MICROWAVE SURFACE RESISTANCE R,

The high-frequency electrical properties of superconductors are influenced by both n, and n,,, and have
accordingly been analyzed in terms of the Gorter-Casimir two-fluid model [62]. As derived , for example,
in Van Duzer and Tumer [63], the complex surface impedance is expressed as

Z;= R+ jaL, , _ ,
= (12) o?ug?M 30, + joughy, (5)

where @, is the conductivity due to normal electrons, @ is the angular frequency, A is the London penetration
depth as defined in Section 2.1, and g = 4% X 107 H/m [meter-kilogram-second (MKS) units used here].
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For mixed-valence hopping electron perovskites, 6, = 6(n,/N), as defined by Equations (10) and (44),
and Az () =2, (0)[1 - exp(W-W/t)I-172 [to be developed as Equation (65) in Section 6.3}, with ¢ = T/T o The
MKS version of A;(0) = (m/pugne2)!/2 is used here with n, given by Equation (30) and subsequently nP by
Equation (38). From these relations, the intrinsic surface resistance R of Equation (55) for a bulk supercon-
ductor, defined as the surface losses per unit surface area per unit surface current density amplitude, becomes

Rl ”(1)12m3/2 w?v32 [l—exp(-W)]3/ 2 exp(-wh)
2 ek CTL-x,slz (1-x) :[1 —exp(W—W/t) ]3/2

(56)

In Figure 36 calculations from Equation (56) are compared with R data (corrected to remove the
asymptotic residual resistance contribution determined at T — 0) [64] of a YBa,Cu305 textured film similar
to that of Figure 29 for v(= w/2x) = 1.5 X 109Hz. Forthis particular film, T, =86.4 K, which gives W =0.54
if Epop =4 meV. The remaining parameter values used for the computations of Figure 36 are taken from those
determined earlier in fitting T, and p data: C =2.7 X 105 Qm/eV, x,= 0.035, and x =0.25. Although the
corrections to the raw data to account for film thickness were based on the penetration depth temperature
dependence of the empirical two-fluid model (which differs somewhat from the CET version to be examined
in Section 6), there is remarkable agreement between theory and experiment, with a discrepancy that is less
than a factor of 2 across the entire range of 0 <7< 1.
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Figure 36. Comparison of CET calculations and measurements of microwave surface resistance R, versus t for films
of YBa,Cu;0,/LaAlO,and Nb (data of Oates and Anderson [64] and Sheen et al. [66], respectively).
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It is instructive to compare Equation (56) with the surface resistance expression derived from the BCS
theory,

(C’ &32(T) exp[-ATH/KT)]
(C’ T (1) exp[-A(1)/A0) (1.76/1)) 1))

R,

or

where C’ is aconstant. Because A(1)/A(0) = 1 for1 < 0.5, it may be determined that the temperature-dependent
parts of Equations (56) and (57) approximate each other over this temperature range for W = 1.76. The fre-
quency dependence of R, which differs between the two relations, appears to favor »? of Equation (56), as
determined by experiment [65].

To demonstrate further the difference in W between high-T  oxides and BCS-type metals, data corrected
for residual resistance from an Nb film [66] is fitted to the temperature function of Equation (56), with W =
1.76 (see Figure 36). Because values for C, x,, and x are not available (if indeed applicable here), the computed
curve in this case has been arbitrarily adjusted to match R at T =77 K. Once again, however, the temperature
trend agrees with experiment over the entire superconduction range.

As indicated by Equation (55), R, depends jointly on G, and 2,3. One would expect these high-T
compounds to have lower microwave losses because polaronic oxides should have o, that is intrinsically
smaller than that of metals. Unfortunately, the larger A, values that result from smaller n € appear to more than
offset this advantage, particularly in the temperature regime closerto T . Withthehigh-T, compositions currently
under development, losses comparable to those of metals near their low T, limits may be achieved only at
operating temperatures substantially lower than T,. An unattractive scenario would be to have applications
of these superconductors restricted to a low-T, regime.




6. SUPERCURRENTS AND MAGNETIC PHENOMENA

Although the basic requirement for zero resistance has been defined as n, 2 n,, which is largely controlled
by temperature, this condition alone is not sufficient for superconduction. Superconductivity is a thermo-
dynamic state of energy that is lower than normal and condensation to the superconducting state occurs when
this stabilization energy is transferred to a supercurrent flow. In the following sections, the role of magnetic
field in limiting this current is established, and the factors that determine critical magnetic field, critical current
density, and related phenomena are examined.

6.1 SUPERCURRENT FORMATION AND EFFECTIVE SUPERCARRIER DENSITY n.f¢

It is important to repeat that a superconductor is not a perfect conductor. As stated earlier, perfect
conduction implies simply zero electrical resistivity — the unrealizable case of universally unimpeded charge
transport. For a material to be a perfect conductor, there can be neither scattering among carriers nor energy
loss in the form of thermal dissipation through electron-phonon interaction. In reality, electrons in a solid
can never be completely uncoupled from the lattice, and where so-called "free” electrons are involved, the state
occupation limitations imposed by the Pauli exclusion principle create a repulsive action that also restricts
current flow. Zero resistivity in the superconducting state, however, is achieved through spatial rigidity of
the supercurrent that fulfills the E = 0, B = 0 conditions. As pointed out in the discussion of Equation (3),
supercurrent rigidity (V-i; = 0) requires both V-A = 0 (the London gauge) and Vg = 0. The latter is also a
sufficient condition that implies real-space ordering of supercurrent carriers and may also involve some form
of dynamic spin ordering. The spatial ordering of charges (Vn; — 0) in an MO scheme will now be examined
as the mechanism that creates fixed conduits for supercurrent flow.

If mixed valence can provide conduction among bound electrons delocalized within the directed lobes
of their covalent bonds, it seems intuitive that some kind of electrostatic ordering of these carriers must exist;
lattice periodicity alone would suggest a regularity to any carriers participating in the bonding. The charge
balance requirements for optimizing the Madelung energy also impose such a spatial distribution of valence
states. Because part of the trapping or stabilization energy of the carrier is from electrostatic attraction to its
polaron source, i.e., the other half of its electric dipole, the carrier ordering is dictated by the dispersal of the
fixed polaron sources, as depicted in Figure 37(a). For vanishingly small concentrations the carriers are
isolated, with radially symmetric cell profiles in an x-y plane (in reality, only the fourfold symmetry of a
dz2 2 orbital in the Cu-O,4 square-planar case). As the spatial density of polaron "cells” increases, the shapes
of the overlapping regions converge into a chain to assume the minimum energy orientation of aligned electric
dipoles. At a threshold density of fixed polaron sources, condensation of ordered chains would occur
spontaneously in a manner depicted by Figure 37(b). A more realistic quantum mechanical picture of the
resulting giant molecule structure that permits the ordered passage of carriers through the directed lobes of
covalent bond MO wavefunctions is shown in Figure 38.

In the preceding sections, the necessary condition that p = 0 was discussed in terms of a series of parallel,
independent chains that could be represented by a one-dimensional model because only one completed chain
would be required for zero resistance. For phenomena related to the buildup of supercurrent and its associated
magnetic effects, however, orbital transfer can no longer be treated as an isolated linear chain but rather as
a series of interconnected chains distributed across a macroscopic area.
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Figure 37. Two-dimensional model of polaron condensation to superconducting state: (a) below percolation threshold,
and (b) after ferroelectric alignment with ordered supercurrent flow at threshold R = R,
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Figure 38. Superconducting polaron distribution and probability contour of the carrier density n,= / v, /2.




It will be recalled from Equation (38) that the completion of a single path was contingent on the existence of
a threshold supercarrier density n,, occurring at T = T; because a fraction of the electrons is in thermal activation
at all times, the total n, cannot be expected to complete every possible superconduction linkage simultaneously.
Even if the chemical ordering were ideal (P = 1), the incidence of electron-phonon encounters is still random. A
possible analog to this effect would be the electrical breakdown of a gaseous medium, which begins with a single
irregular striation that moves about as dictated by random molecular collisions. As the ionizing collisions increase
with density (or pressure), multiple striations appear, and the gas is eventually transformed into a plasma continuum
with a large fraction of the gas participating in the current. In Figure 39 this effect in a square-planar lattice is
depicted by a Boltzmann population of hopping electrons that disrupt completed paths momentarily (a), only to
reestablish new ones adjacent to (or including part of) the originals (b).
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Figure 39. Two-dimensional model of partially condensed supercurrent: (a) before disruption by hopping electrons,
and (b) afier esiablishment of new supercurrent paths.
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At this point it may be reasonably assumed that the current increases continuously from zero, with only
the excessof n;overn,initially contributing to the supercurrent. Aneffectivecarrierdensity atT =T istherefore
defined as n (T ,) = n(T ) - n(T.)=0. AtT=0,however, there are no hopping electrons and one must assume
that all of n, is contributing to the supercurrent, i.e., n,5(0) = ny(0). To satisfy these boundary conditions in
the most direct manner, the above relation may be generalized to all temperatures according to

nE&(T) = ny(T) - n(T) , (58)

where n(T) = n(T)[1- n,&(T)/n(0)}. Thus, the fractional contribution of the threshold carrier density n(T )
to the supercurrent increases in direct proportion to the buildup of the effective carrier density n*(T) as
T — 0. The logic of Equation (58) is displayed pictorially in Figure 40, where the n.£(T) population is pictured
as decreasing because of the proportionate decrease of n(T) and increase of n(T). After rearrangement to
isolate n,°(T), Equation (58) becomes

ns(T) - nt(I;_)

n;(T) =n;(0 ns(o) ~ n’(Tc)

(59

Figure 40. Pictorial representation of the simultaneous decrease of n *(T) and the growthof n(T)asT =T _, where n,
and n,converge 1o establish the threshold density for the onset of superconductivity.




Based on this relation for the effective carrier density that contributes directly to the supercurrent, it is
now possible to proceed with an examination of the current- and magnetic-field related physical parameters
derived from the London theory.,

6.2 CONDENSATION ENERGY A6

According to the London thermodynamic arguments [9], the condensation energy of the superconduction
transition is the reduction in the Gibbs free energy per unit volume AG. Inspection of Figure 37 reveals that
this energy may be represented by the difference in energy between aligned and randomly oriented dipoles
~ not unlike ferroelectricity or the electronic analog to spin-ordering in spontaneous magnetism that was
originally proposed by London [67] in defining his macroscopic molecule concept. Unlike spontaneous
magnetism, however, there is no fixed population of dipoles and no strong exchange field that may lend itself
to a Brillouin function variation with temperature. Instead, the fractional population of superconducting
polarons is exponentially dependent on (kT)~!, and because the polarons are transported by covalent transfer
that is not directly phonon-coupled to the lattice, the conduction mechanism is temperature independent. This
situation permits the electrostatic potential energy of the dipole array to be released adiabatically as kinetic
energy of carriers in an ordered state, without the usual descent to random thermalization that produces the
temperature change associated with the magnetocaloric or electrocaloric effects.

Because condensation occurs as a supercurrent is generated, a two-dimensional model is not only
sufficient to describe the physical situation, but is probably more appropriate. For a planar array of dipoles
with moment my, this function could be expressed as?’

AG = 6,-6; ~ (my-mp/KRP) ne
= (mdz(cosﬁ)/KR,f) ne . (60)

Because {(cos0) = 1 (perfect alignment), R; = alx = alnV, and m; = eR 42 (at the midpoint between cell
centers), Equation (60) may be approximated by

27This relation may be derived from the standard theory for the interaction energy density of a dipole array
(withK=1),

2 my-my _ 3{'11 'mdj)(rjk .ma)
3 5 ’
r r

where r;; is the distance between neighboring dipoles j and k. For a linear chain of aligned dipoles, the energy
per dipole is — 2m2/r 2, and for a square planar array, it is — m 2/r 2, similar to Equation (60) withK = 1. In
the cubic case, the energy is zero to first order; smaller contributions come from quadrupole terms. If low
symmetry yields high A&, uniaxial and planar structures should feature larger critical fields and current
densities, as discussed in Section 6.4 and 6.6.
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A6 = (1/4) (2V/aK) (n P,
= (1/4) (e?/VaK) (x,2)? 61

where the minimum value of R; = R, = 2a as shown in Figure 37(b). Fora=4 A, K = 16, and recalling that
V = 1.7a3 for La,_,Sr,CuQy, it may be estimated that AG = 8.32 X 108 (x,¢)2 ergs/cm3. (For this computation
and those that follow, e = 4.8 X 10-!0esu.) Because x.¢ is a function of T, AG(T) may be evaluated at T =0.
With x,¢(0) = 0.068 for La; gSrg ,CuOy (see Figure 22), AG(0)=3.77 x 106 ergs/cm3; for YBa,Cu305, where
x,£(0) = 0.09 and V = 1.5a3 [considering only the Cu(2) sites], and AG(0) = 7.54 X 106 ergs/cm3.

The formation of the spatially ordered carriers (Va, = 0) in a molecular chain, therefore, results from the
electrostatic dictates of the Madelung energy. For the creation of the supercurrent, however, the dynamic
order of the carriers results from electrostatic repulsion between the mobile halves of the dipoles, possibly
enhanced by the Pauli principle repulsive action. As the carriers transfer between cells, maintaining the
required one carrier per cell ordering, there is no direct competition for quantum states and the Pauli repulsion
serves as a propellant to charge transport rather than as a cause of carrier scattering. As a consequence,
supercurrent rigidity follows naturally from the constraints of the directed bonding orbitals which act as
conduits for the passage of electrons.

6.3 LONDON PENETRATION DEPTH A,

From the relation between current density and magnetic field stated in Equation (3), the London
penetration depth is now defined in terms of n,¢, according to

AL = (mcdnen )2 = (mc2V/Anelr )2 | (62)

which provides A, (0) =5.32 X 105 V122 x ¢(0)-'/2 cm, if the true electron mass is used. Forthe La, ¢Stg,CuO,
perovskite in Figure 22,V =1.7a3,a=4 A, and x,2(0) = 0.068, which yields A, (0) = 2130 A, in good agreement
with the 2000-A value determined from experiment [68,69] for YBa,Cu;0,, where V = 1.5 @3 and x,¢(0) =
0.09, A,(0) = 1740 A, in accord with the 1670-A value derived from microwave strif line resonance mea-
surements [64]). The familiar ratio then reduces to the new two-fluid function,

ALOWALD] = ng(DinsO) . (63)
From Equations (30), (38), and (59), Equation (63) is developed as

n:(T) _ [I - exp( _Ebop 1kT )] - [l - exp( -Ehop/ch )]
nt(0) 1 -[1 —exp( ~Ey o /AT, )] ’ (64)

which leads to  [AL(0)/A (D] = n&(8)/nsc(0) = 1 —exp(W-W/r) (65) 4
where t = T/T,.
In Figure 41, generic urves of n/(#)/n,¢(0) from Equation (65) are plotted for a range of W values

[including W = 1.76, i.c., the universal ratio between &T,. and the BCS energy gap £{0)] and compared with
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curves of the empirical two-fluid (1 — %) and BCS models [70). At this point, it is instructive to compare the
basic critical-temperature relations for both models:

kT, = A(0)/1.76 (BCS) , (66a)
and
kT, = Epo/W (CET) . (66b)
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Figure 41. Comparison of nf(t)in.f(0) versus t for W = 0.5, |, and 1.76 with the BCS function, and with the empirical
(1 - ) two-fluid function.

With the La, 4Sry,CuO, and YBa,Cu;0; systems examined in Section 5.1, working values of W
determined from fits to data are 0.75 and 0.5, respectively. For the BCS model, the denominator is the constant
1.76 calculated from n/y, where 7 is Euler’s constant (= 0.577). All the material-related information is
contained in the gap parameter A(T) computed at T = 0 that appears in the numerator. This temperature-
dependent gap energy, which determines the ratio of supercarriers to quasi-particles (normal electrons), is a
maximum at T =0 and falls to zero in a Brillouin-type curve as T — T ... In the CET treatment, a gap equivalent
would be the fixed numerator E,,,,, but the denominator W is also a material-related variable that is strongly
dependent on the polaron radius ¥,,.

Although their meanings differ somewhat, A(0) and E,,, represent energy separations (the former a
condensation gap for electrons paired in k space and the latter a polaron trap barrier). The important
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differences in the two relations of Equation (66) also lie in the W parameter versus the fixed denominator 1.76
of the BCS model. Comments on the agreement between the curves of Figure 41 for W= 1.76 will be reserygd
for a later discussion.

Experimental evidence of the departure of n£(¢) from both the BCS model and the conventional two-fluid
curve may be seen in the results of A, (f) measurements. The In[A,;(£)/A,(0) — 1] data of Anlage et al. [71)
plotted as a function of ! in Figure 42, where the ordinate variable in this instance was deduced from
microwave phase velocity measurements [72] and applies to the regime ¢ < 0.5. For purposes of comparison,
the curves are adjusted to merge at ! = 2. All the YBa,Cu;0, (YBCO) films are fitted to CET curves with
W < 1 and for the film with the LaAlO; substrate, W = 0.5, consistent with the T, results for bulk specimens
and for the LaAlO;-substrate specimens examined for the different superconductor variables throughout this
report. Itis also interesting that the slight departure from linearity that appears in the theoretical in{A, (r)/A,(0)
— 1] function near ! = 2 is also reflected in the measurements, thus confirming that the function is not just
a simple BCS exponential. Further indication that a different two-fluid function is required for the high-T_
oxides may be seen when fitting the CET model to the microwave resonance frequency data of QOates and

" Anderson [64], as is shown in Figure 43. With this technique, the resonance frequency f, ", varies with the
temperature dependence of the penetration depth, which in turn is sensed through the changes in kinetic
inductance of a YBa,Cu30,/LaAlO; stripline resonator. For a value of A;(0) = 1740 A, the agreement is
reasonable for W in the 0.5 to 1.0 range up to 90% of T,..
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Figure 42. Comparison of calculated In{ AL( t)/l,_(l) — 1] versus r! curves with the YBaZCu 1;0,/LaAlO ‘) and
YBa,Cu;0,/MgO film data of Anlage et al. [71] for W = 0.5 and |.
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Figure 43. Comparison of calculated resonance frequency f, versus t with YBa,Cu30,/LaAlO; stripline resonator data
of Oates and Anderson [64] for W = 0.5, 1, and 1.76.

Although the regime in which the above analysis was focused is the clean limit £, << A, of the high-T.
superconductors, for completeness it is appropriate to mention the relations for effective penetration depth A
and coherence length & that are used for the classes of superconductors introduced in Section 2.3. For the
type-I pure limit with & >> A, (formally expressed as &3 >> EgA2), A = 0.65 A, (E/A, )3, and for the type-II
(London or dirty) limit where § — € (formally expressed as &3 << Eg),;2), A = A, (E/B) 12 = A, (Ey/0) 2.

64 THERMODYNAMIC CRITICAL MAGNETIC FIELD H,

If a bulk specimen is placed in a magnetic field H, the field will be expelled from the interior during a
superconduction transition (the Meissner effect). Consequently, the superconduction Gibbs free energy @
will increase by the amount of the energy density H2/8x of the expelled flux [73]. As a function of H, G;
becomes

G(T.H) = 6(T.0)+ H}f8n . (67)

For a nonmagnetic specimen in the normal state, however, &,(T.H) = 6,(T,0), and because the condition for
the return to the normal state is G, — G = 0, the critical field may be defined according to Figure 44 as

AGT0) = 6,(T0)-6(T0) = H(T)Br , (68)
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and

H(T) = [8n AGT0)1'2 (69)
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Figure 44. Change in Gibbs free energy as a function of H, indicating a decreasing energy available for conversion to
the kinetic energy of supercurrentas H — H ..

where H (T) is the field at the surface [recalling from Equation (1) that H (and i,) decays exponentially, with
penetration depth A;]. After substitution from Equation (61),

H(T) = (2re?V/aK)'2 ng(T)

= (2ne/VaK)'\2 x (1) . (70)

To determine H,, it is important to realize that specimen cross-sectional dimensions should exceed the
penetration depth in order to avoid the necessity of a correction (1 —A./A)~!72 to the effective volume of flux
expulsion given in Appendix E. If A ¢/A — 1, as in the case of a fine wire or thin film, the flux penetrates much
of the material and the effective H,. is substantially greater than the true value.
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From the estimates of AG(0,0) beneath Equation (61), substitution into Equation (69) leads to H (0) =
10 kOe for bulk La, ¢Sty ,CuO,, and A (0) = 14 kOe for YBa,Cu30,. An experimentally based value 5] of
10 £ 2 kOe for bulk polycrystalline YBa,Cu;0; was derived from conventional theory.

A universal relation follows directly from Equation (70):

H(D/H0) = A (O)/A (D = nT)Inc(0) an

and

H(/H (0) 1 -—exp(W-W/1) , (72)

to produce a temperature dependence that is the same as the two-fluid function of Equation (65). The curves
plotted in Figure 45 for W = 1.76 and 2 are, therefore, from the same family as those of Figure 41, but in this
case it is more appropriate to compare them with the standard thermodynamic relation H (t)/H (0) = (1 - ?),28
and also to examine the slopes at T = T,.. From the derivative of Equation (72) it may be shown that

(OH (/3f],; = - H.OW , (73)
or
OHT)RT = -W[HOWT,] atT=T, . (74)

To match the slopes of the CET curve to the thermodynamic relation, W must therefore equal 2, slightly
larger than the 1.76 BCS ratio. As indicated in Figure 45, the curves fit well over the upper quarter of the ¢
range. Based on these results, one concludes that lower values of W substantially alter the shape of these curves
that include the appearance of a tail and an inflection pointatz= W/2 (i.e., concavity begins to appear for W < 2),
and have an overall deleterious effect on the magnitudes of H,..

At this point, it would be natural to continue with the subject of type-II superconductors, bur this
discussion must await the explanation of coherence in the context of the CET that is covered in Section 6.8.

6.5 SPECIFIC HEAT DISCONTINUITY AC

For a magnetic field along the axis of a long thin specimen, a number of thermodynamic state variables
may be directly related to H_and dH /0T, as derived from the basic phenomenology of superconductivity [74].
The entropy per unit volume is given by

S = - (36T, , (75)

28 Note that the CET universal relations for H ()/H (0) and [A.,_(O)ﬂ‘,_(t)]2 are identical according to Equation
(71) but differ in their thermodynamic counterparts (1 — r2) and (1 - r%), respectively.
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Figure 45. Comparison of H (1)/H (0) versus t for W = 1.76, 2, and the thermodynamic (1 - £) function.

where S is discontinuous at the critical point. The change in S then becomes

AS=S,-S, =—(1/87) QH2OT) ,
or

= ~(1/4n) H, @H oT) . (76)

It may be shown that 9H /0T =0 at T = 0, and that H. =0 at T = T ; therefore, AS must pass through a
maximum somewhere between these two temperature limits. The latent heat per unit volume Q may,
therefore, be related to the critical field by

Q=TAS =-(1/8m) T (0H 2/0T) . (77

Because H.=0at T = T, both Q and AS = 0, and the transition is adiabatic at the critical temperature.
For T < T, dH /0T is always negative, S,, > S, and this implies that superconduction is the more ordered state.
There is also an anomalous decrease in specific heat C observed as T rises through T.. Based on AC =
T 0(AS)/0T, differentiation of Equation (76) yiclds
AC=C,-C, = - (18r)T (32H 2/oT?) ,

=— (1/Am)T [H, (PH 0T + QH QT . (18)
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Recalling that H (T,) = 0, the absolute value of AC(T,) from Equation (78) may be determined by
substituting the expressions for dH /oT at T = T, from (74), and for H (0) from (70) with the result that

AC(T,)

- (1/4n) T (H OT)?

- (1/4r) (HOTH) W2,

-2(AGO)T)W2

— (172) (€%V/aKEyy,) W3 ne(02

- (172) (e?%k/VaKE,,) W3 x2(0)2 . (79)

N

As a consequence, AC should be smaller for oxides with small W and H (0) values, and large Ehop. For
La; gSry,CuO, withT,=40K and W =0.75,AC ~ 1 X 10%ergs/cm3-K [see parameter values under Equation
(61)]; for YBa,Cu;0, with T. = 95 K and W = 0.5, AC ~ 4 X 105 ergs/cm3-K.

By substituting into Equation (78) the relations for 92H /T2 derived from n,¢(T) of (65), AC relative to

its discontinuity value at 1 = | may be expressed as a function of reduced temperature by

AC(D/IAC(1) = W-2 t{ (W[ — W2/tH)exp(W-W/t)

- (QW/83 = 2W2Mexp[2(W-W/D]} . (80)
InFigure 46, generic curves of AC(#)/AC(1) are plotted for W= 1 and 1.76 to illustrate the qualitative agreement
with data of metals Sn [75] and Ga [76]. For the W = 1,76 curve the sign reversal of AC at ¢ = (.58 matches
exactly the London prediction that is based on reaching AS maximum at 7'=T, ‘/‘/3 [74]. Itis also interesting
that although the W = 1.76 curve does not fit the Sn and Ga measured curves with high precision, this value
of W alsorepresents the best fit of the CET model over the full temperature range. For the high-T,Cu perovskites
(W < 1), the electronic contribution (e T) to the specific heat may be masked by the lattice contribuiion

(o< T3) where T exceeds 30 K. Experimental results, therefore, may not bear a close resemblance to the
calculated curve.

6.6 CRITICAL CURRENT DENSITY i,

Pursuant to the hypothesis of dynamic ferroelectricity, critical current may be defined by equating carrier
kinetic energy to condensation energy AG. From Equations (68) and (69), one may assume [77]

AG = (1/2)nemv2 = H 28 = (1/4)(e2V/aK) (n2)® €3))
which leads to
v, = [(1/2) eV/maK]'\2 (n)'2 ,

= [(112) e}/maK]'2 (x)12 . (82)

For La, ¢St ,CuO, and YBa,Cu30,, witha=4 A and K = 16,v,=7.3 X 105and 8.4 X 108cm/s, respectively.
It should also be pointed out that the relation v, ~ K~!22 is consistent with the expected trends in local accel-
erating fields within materials of high or low dielectric constant, i.e., metals or insulators.
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Figure 46. Generic curves of AC(1)/AC(1) versus t for W = | and 1.76, compared with data of Phillips from Sn [75]
andGa[76]. The W = 1.76 curve provides the best fit to the Sn and Ga data over the completetrangeand its signreversal
at t = 0.58 matches the London theory [74].

Because the relation i; = n,fev, represents the maximum possible supercurrent density for a given tem-
perature and magnetic field, it may be described as the critical current density defined from Equation (82) as?®

i. = [(12) AV/maK]'\2 (n,c)32

[(172) é/mV2aK]'2 (x PR

=(5.4 X106) V-1 (aK)"'12 (x,£)32 esu/s-cm? ,

= (1.80 X 10-'3) V-! (aK)"'2 (x,£)32 amp/cm2 . (83)

For the La, ¢Srg ,CuO,4 and YBa,Cu;0, superconductors of Figure 22 with K= 16,a=4 A,and V=1.7a3 and
1.543,i.(0) =3.67 X 108 amp/cm?2 and 6.33 X 108 amp/cm? are the upper theoretical current density limits,
corresponding to x,(0) = 0.068 and 0.09, respectively.

or

29 From Equation (3) it will be recalled that i, = (c/4nth, 2)A. If A~ H ), (for specimens of dimensions greater
than A, ), then Equation (83) may be derived directly from the London theory, with

i, = (cARYH /) = [(172) #4/mV2aK])'\2 (x)32
after A, = (mc2/4ne?n )2 from Equation (1) and H, = (2re2V/aK)'2n ¢ from (70) are substituted.
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From Equation (65), (83) may be converted to a universal curve,

iDf0) = [1 —exp(W-W/HP2 . (84)

In Figure 47, universal curves for i (1)/i (0) from Equation (84) are ylotted for W = 0.5, 1, and 2, once again
displaying an increasing concave shape above ¢ = 0.5, as W becomes smai'er. (The traditional counterpart to
Equation (84) is the Ginsburg-Landau function (1 — 1)32, considered to be valid near T,.[77).) Comparison with
experiment (Figure 47) is first provided by the data of Hunt [79] for Sn and Clem et al. [80] for NbN (unoriented
thin films), both BCS-type superconductors for which a good fit to theory is found with W = 2. Further indication
of the applicability of the CET model is seen in the comparison with the data of Westerheim et al. [61] and Inam
et al. [81] for highly c-axis oriented YBa,Cu30, (YBCO) thin films, where the points fall between the W = 0.5
and 1 curves, the range established earlier in analyzing the electrical and microwave properties. Inthese latter cases,
the intergranular current density i **P(0) =4 X 107 amp/cm2, which is abouta factorof 15 below the value suggested
under Equation (83) as the theoretical limit for intragranular currents.30
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Figure47. Normalized critical currentdensityi (t)/i (0) versust forW =035, 1,and2 plotted from Equation (84). Data
for Sn are from Hunt [79], for NbN from Clem et al. [80], and for YBa,Cu 0, from Westerheim et al. [61] and Inam et
al. [81]. '

3Critical current measurements with polycrystalline (granular) specimens are hampered by the transport of
current across grain boundaries. The density of condensed supercarriers is solely a function of temperature,
therefore, i **P(1) should scale in proportion to the true (intragranular) current, and the universal i **P(2)/i **P(0)
versus ¢ function for intergranular currents should not be affected by the impedance of the grain boundaries.
Based on the discrepancy between theory and experiment, one might conclude that the grain boundaries even
in highly oriented films could reduce the intergranular current density by an order of magnitude.
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Because i, is defined by Equation (2) as the density of supercurrent at the specimen surface, measure-
ments must be corrected for the effects of small penetration depths as analyzed in Appendix E. Where the
specimen cross-sectional area is not very much smaller than A2, the effective current density is reduced
because the current is confined to layers within A, of the surface [78}, and Equation (84) must be modified
to fit experiment by

i SP())i 2P(0) = [1 - exp(W-W/D]P2 A (1A (0) | (85)

with A ¢ = 27, [d,(1-exp(—dy/21)) + do(1—exp(—d,/2A; ) — 2h; (1-exp(~d,2A, )(1-exp(~d,/2A,)], and d, d,
are the dimensions of a rectangular cross section (see Appendix E). In the opposite limit of d;,d, >> 4,(0),
Equation (85) simplifies to

(P P0) = [1-exp(W-W/OP2 X, (D/A0)
or from Equation (65),
i exp()fi s*P(0) = [1 —exp(W-W/r)] , (86)

the same as the relation for n,¢(r)/n,¢(0) from Equations (71) and (72).

In Figure 48, the data of Lessure et al. [82] for a bulk YBa,Cu,0, specimen is plotted and compared
favorably with Equation (86) for W = 1.
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Figure 48. CET universal plot of i (1)/i (0) from Equation (86) for the bulk case with W = I, compared with data of
Lessure et al. [82).




In the presence of an external magnetic field H, part of the condensation energy density H2/8n is required
to expel H from the interior of the material as shown in Figure 44, and a more general expression for AG(H)
may be constructed from Equations (67) and (68):

AGH) = 6,(H) - 6(H) = H2-H)Br . 87
From Equations (82) and (87), Equation (81) for the kinetic energy density may be generalized to

AGH) = (12)nemv2 = (H2-HY)/8r . (88)
If it is assumed that n,¢ is unaffected by H,3! the reduction in AG occurs as a decrease in carrier velocity and

v, = [(H2-H>/Anmns)\2 | (89)
from which a universal relation for critical current density as a function of magnetic field may be deduced as

i(H)i0) = [I-(HH)2\2 . (90)

Thus, it is seen that the supercurrent is limited by magnetic field which offsets the condensation energy,
and by temperature, which controls the density of available carriers. It should be pointed out that Equation
(90) describes the situation in the absence of a fluxoid lattice, i.e., type-I superconductors, where H,. is the
thermodynamic critical field, and should not be expected to predict accurately the behavior of type-II
superconductors, in which a variety of magnetic field-related effects may influence i (2,H) [84].

Because T = E,,./kW, the superconduction critical temperature may be raised intwo ways, by increasing
Ejop, at the risk of introducing a magnetic exchange energy barrier that could upset the b > Ej,op requirement,
or by reducing W, either through improved polaron dispersal (P — 1) or smaller polaron radii (n, — 0) but
at the expense of lowering the reduced valuesof H.andi.asT > T,.

6.7 INTRINSIC COHERENCE LENGTH &,

A natural continuation from the above discussion of critical magnetic fields is the subject of coherence
and its role in type-II superconductors. As discussed in Section 2.3, the notion of coherence was introduced
by Pippard [11], who proposed that the nonlocal nature of the superelectron may be characterized in terms of
the uncertainty principle. In this approach as applied to free-electron systems, the superconducting electrons
are drawn from the population with energies within &7, of the Fermi level. In order to obtain a relation for
the individual carrier momentum p_ in the superconducting state, Pippard reasoned that their momentum range
could be estimated by dividing the condensation energy, assumed to be equivalent to kT ., by the Fermi velocity
ve.i.e., Ap,~ kT /vp[85]. As aconsequence, the position uncertainty (coherence length) becomes Ax (= &) 2
(hR2r)(ve/kT ).

3! In type-1I superconductors there are situations where nf may be considered a function of H [83], such that
A(H) = == as ng(H) = |yt |2 - 0.
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Another definition of coherence length was provided by Ginsburg and Landau [12] from the solution
of a Schrodinger-type equation with a nonlinear term. The resulting aggregate eigenfunction for this
differential equation contained an exponential decay [see Equation (6)], y,(x) ~ y,(0)exp(-x/E), where

' W, |2 = nf is the expectation value of a spatially varying superconduction ensemble wavefunction of
coherence length & that reduces to the Pippard result for T << T. Thus, the conceptual compatibility between
Pippard and Ginsburg and Landau may be seen if it is simply viewed as the average distance a carrier travels
before losing coherence with the ordered state. Inreality, the carrier rarely reaches this limit, but the attendant
velocity range may be used to define the degree of spatial order.

In its essentials the Pippard definition describes the coherence of a carrier chain composed of
wavepackets with a spatial profile that may be assigned a de Broglie wavelength defined by

xdtB = h/p_, . on

This concept is compatible with the basic CET model of a chain of localized wavefunctions that link to
form a single MO function. Applying, therefore, the generalized form of the uncertainty relation for space
packets, we obtain

ApsAx 2 h2m 92)
or in this present context,

ps&o = h2n (93)
where Ap, is replaced by p,.32

In the CET model the condensation energy is not immediately determined by kT, so the use of the
Pippard relation for Ap, must be modified. The role of the energy trap is different from the conventional band
theory approach in that it determines directly the population of available supercarriers but only indirectly their
energy. As discussed in Section 6.2, A@ is determined by n,%(T) and is more closely associated with H,. than
T,. Because the CET model has conveniently produced a distinct relation for the carrier velocity, however,
the question of estimating Ap, by indirect means is unnecessary, and therefore, a coherence length similar to
that of Pippard can be defined directly from the relation for superconductor carrier velocity of Equation (82),

& = (h2n)lp, = (h2m)/mv,
or
= [(h?/2n2me2) (aK/V)]'2 (n )12

~ [(h/2n2me2) (aK)]'\2 (x )12 (94)

32 An alternative derivation of Equation (93) may be obtained from the standard quantum mechanics operator
through the relation —j(h/2x)V,, where p, is a good quantum number for a stationary state. The ensemble
wavefunction y,(x) ~ y,(0)exp(-x/Eq) from Equation (6), therefore Vy, = — (1/8)V, again arriving at p,-&,
~ h/2n. This result suggests that the ensemble concept of Ginsburg and Landau and the individual wavepacket
idea of Pippard are equivalent as far as the notion of coherence is concemned.
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If the parameter values used in the earlier discussion of critical phenomena in perovskites are also
employed here, an intrinsic coherence length may be approximated by the following:

Eo = [(h2/2n2me?) @K))'2 (x£)'2
= 1.03 X 104 (aK)12 (x,0)"'12 . ©5)

If Equation (95) is applied to the perovskites with K =16 anda=4 A,
Ex(0) = 8.23 X 103 x2(0)"'2 cm . (96)

For x,£(0) = 0.068 (La, 3Sry,Cu0,) and 0.09 (YBa,Cu30,), £(0) = 32 A and 27 A, respectively, in general
agreement with experiment [53]. For type-I metal superconductors, (0) ~ 10* A, which is also consistent
with Equation (95) through the direct dependence of &, on the dielectric constant (K'/2) that becomes very
large in highly polarizable materials with loosely bound electrons.33

A discussion of the type-II superconductors follows, and it is appropriate to establish the analytical
relationship between £, and A; from Equations (94) and (62):

8o

[(2h%frm2c2) (aKW)]'2 Ay,

1.93 X 10-10 (aK/V)12 X, cm 97)
where A, is in centimeters. For the two perovskite systems,

x = A€ = 5.18 X 107 (aK/V) 12
= 67 for Lal.ssro_zcu04 N
= 63 for YBa,Cu;0, , (98)

with the latter result closely agreeing with the value of 62 derived from experiment [5]. These results serve
to confirm the expectation mentioned in Section 2.3 thai the high-T,. perovskites behave as natural type-1l
superconductors, with A, /€ >> 1. (Metals with the large K values are Pippard superconductors, with
A&y << 1.} Although x is temperature independent, in accord with traditional theory [86], it must be
recognized that both A, and &, derive individual temperature dependencies through the supercarrier density;
asT— T, A, and £y — eo through their mutual dependence on (n,°)~!2from Equation (30). Although Pippard’s
uncertainty principle arguments were used in these derivations of coherence length, the CET formalism yields
the above temperature dependence of E that is more characteristic of the Ginsburg and Landau definition,
which also produces a temperature-insensitive x = MT)/E(T) [87].

33 The dielectric constant in the context of conducting materials is viewed here as a parameter that represents
the polarizability in a quasi-insulating state with at least some of the free electrons condensed back on their
parent ions for covalent transfer. In the metallic state of course, macroscopic polarization effects can only be
inferred, because any measurements are precluded by the presence of free electrons. This topic is examined
further in Section 8 and Appendix G, where the K for Sn is discussed in terms of x, H (0) and the electron
velocity through the relation v, ~ K172 of Equation (82).
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If Pippard’s use of the carrier mean-free-path d (here replacing £ from Section 2.3 with d, which could
be the thickness of a film or the diameter of a fine wire) is adopted to define a reduced effective coherence
length €, we obtain

1 = 1/Eg + 1id (99)

for which § — d where £ >> d. If drepresents the radius of a fluxoid domain inthis model, i.e., 2d is the spacing
between nonsuperconducting regions, a decline in superconduction efficiency can set in as d becomes in-
creasingly smaller. Microscopic-scale d values can lower n by raising the polaron dispersal parameter B,
thereby increasing W to cause a lower T,. Another effect of short mean-free-paths would occur in the size of
the large-polaron radius T described by Equation (40). Because Y determines ng (and hence 7, ), the nominal
threshold density for superconduction, any decrease in its value would also increase W.

At this point the physical meanings and relationships of the large-polaron radius and the coherence
length may be compared. The cell radius of an isolated polaron ¥, is a normal-state parameter that determines
the minimum density for which a polaron chain may condense to the superconduction state and is directly
dependent on the transfer integral b. The coherence length £, on the other hand, emerges from the uncertainty
principle as applied to the wave mechanical nature of the superconducting state, i.e., & is larger for smaller
momentum values, and because it varies as (n,°)~!/2 according to Equation (94), it is dependent on the B
dispersal parameter and is generally smaller for oxides, where x, < 0.1.

6.8 TYPE-II SUPERCONDUCTORS

As introduced in Section 2.3, the three general categories of superconductors are distinguished by the
relations between Egand A;. In reality, only type-1 materials (pure superconductors with £ >> A, ) feature a
single critical magnetic field in which the flux expulsion takes place completely once the thermodynamic H,.
threshold is reached (in abulk specimen). In materials of practical importance, however, flux expulsion occurs
over arange of fields, with the limits defined by H., SH_.< H 5. The spatial variation in H,and y,ata 1ormal/ |
superconductor interface, shown in Figure 49, indicates that type-1I superconductors with ¥ >> | have in-
terfac cgions set by & that is small enough and A, large enough to permit the bulk volume of the material
to divide into islands of fluxoid domains that harbor magnetic flux in their normal cores at a field less than
H,. With the presence of fluxoid domains, the thermodynamic critical field H,. can no longer be measured
directly. A larger field H , is required to offset the condensation energy defined in Equation (68) because the
invasion of flux reduces the volume of material from which flux is expelled. As analyzed in detail by
Abrikosov [88] and discussed by Kittel [89] and Tinkham {90], the critical magnetic fields for clean high-T.
perovskite superconductors with £ = E; and A = A, may be approximated by

H./H. = [(V2)x]'Inx , (100)
and
HoH, = (V)¢ . : (101)

With x independent of temp=rature, H,., and H_, should track with H as functions of temperature. As
shown in Figure 50, a universal curve with W = 0.8 is fitted to the H (1) data [91] from bulk polycrystalline
(Dy.Eu)BaCu,0,.
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Figure 49. Variation of H and y, at the fluxoid/superconductor interface for x << I (type I) and x >> | (type 1).
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Figure 50. CET calculated curve of H ,(1)/"] ,(0) versus t compared with data of Yamagishi et al. [91] for W = 0.8.

Another comparison with experiment may be carried out with the values of critical fields estimated from
measurements of ancm/ar atT=T,. For W= I, the slope from Equation (74) is simply — H (0)/T ., and the results
of Finnemore et al. {92], dH (T)/dT =-165 Oe/K for YBa,Cu;0, conforms closely to the calculated estimate of
-155 Oe/K, with H (0) = 14 kOe [computed beneath Equation (70)] and 7. =91 K. If Equations (100) and (101)
are used with the above approximations and with x = 63 from Equation (98), the ratio 0H »(T)/dT + oH .,(T)/dT
= 2x2/Inx = 1920, which closely matches the result of Cava et al. [5): 13 kOe/K + 7 Oe/K = 1860. It also follows
from Equations (100) and (101) that for H_= 14 kOe, H_, = 660 Oe and H 5 = 1250 kOe.
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The question of the dirty superconductor may now be examined in the above context. Traditionally, a
type-II superconductor is a metal with a € reduced to values below A, by the presence of inhomogeneities —
“normal” regions that act as nucleation centers for the fluxoid lattice, in a manner similar to the formation of
reverse magnetic domains about pores and grain boundaries in a ferromagnet. As pointed out in Equation (99),
the situation for which A, /€ =A,/d >> 1 occurs in metals where d << &, thus limiting the coherence length to
a mean-free path. With the discovery of the high-temperature oxide superconductors with typical £y~ 30 A,
the A, /€ >> 1 condition appears to exist naturally even in macroscopically homogeneous specimens.

The effect of local or dispersed inhomogeneities in the form of impurities or lattice defects has somewhat
different implications for a metal and for an insulator. In metals, with the greatest charge screening effects,
£y >> A, and the effect of inhomogeneities is significant in reducing & to set up the conditon for establishing
the fluxoid lattice, which can occur where d << A;. In effect, the impurities in a metal are required for the
creation of a type-II superconductor through the nucleation and pinning of fluxoid regions at the impurity
centers. In superconducting oxides with finite (measurable) dielectric constants, however, 3 << A;, and the
fluxoid lattice forms in the absence of impurities. Without pinning centers, they may be described as natural
type-1I superconductors.

Because the fluxoids are mobile, the inhomogeneities affect the fluxoid lattice only if d < &, at which
point these impurities serve as pinning centers for the fluxoids. The use of induced inhomogeneities as a
practical design strategy for increased magnetic field and supercurrent capabilities of high-7,. materials may,
therefore, be viewed as a method for stabilizing the fluxoid lattice by the pinning of domains about the
inhomogeneities. Without these centers the fluxoid structure is likely to be fluid with the merging and
collapsing of domains increasingas T— T .. The fluxoid lattice may “melt” well below the critical temperature
even in materials with d >A, (0) because A, (T) increases more rapidly with T for small values of W.

To summarize the results of the above analyses, it has been shown that the magnitudes of A, H_, i and
£, are all determined by the effective density of supercarriers n,(T). The various relationships are organized
in Table 6, where the parameter values determined in the foregoing analyses are listed with their corresponding
measured values, where applicable.

6.9 MAGNETIC LEVITATION

Magnetic levitation is the most visually dramatic manifestation of superconductivity, occurring when
the inducement of a diamagnetic supercurrent in amagnetic field attends the expulsion of flux from the interior
of the specimen. An important distinction should now be recalled: A material qualifies as a superconductor
where n, 2 n, (requiring that T < T); however, it does not become superconducting until the carrier chain
condenses to form a Meissner supercurrent for H < H,.. Thus, the supercarrier density is controlled by
temperature, but the supercurrent by magnetic field.

Analogous to the concept of an image charge representing the effects of a metal plane beneath a real
electric charge of opposite sign, the induced supercurrent in a specimen may be represented by a magnetic
dipole, as shown in Figure 51. Because the current produces a diamagnetic moment, however, the dipole
moment would be a mirror image of the external magnet, and the force between them is, therefore, repulsive.
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TABLE 6
Superconductor Parameter Values and Dependence on Carrier Density

Parameter n,® Dependence Theory Experiment
AG(0) (ng®)2 8 X 106 106 to 107 erg/cm?3
vg(0) (nge)12 8.4 x 106 cm/s
i£0) (Film) (ng0)32 6 x 108 4 X 107 amp/cm?

(Bulk) (ng?)

A,(0) (nge)-12 1740 1500 to 2000 A
£0(0) (nge)-172 27 20t035A

X (= A/Eo) 63 62

HL0) nge 14 10 to 20 kOe
Te ng(0)

OH AT (T=T) —H{0)/ T, (W=1) -155 -165 Oe/K
(0H/0T) + (OH4/3T) 2x2/Inx 1920 1860

R, (T=77 K) n./(ngg)3? 2 X 10-5 105Q

As pointed out earlier, the spatial ordering constraint of the covalent bond furnishes the eigenstate
rigidity required for the Vy, =0 condition. The celebrated levitation property of the Meissner effect can be
appreciated, therefore, in the context of a magnetomotive force imparted to a current-carrying coil in an
inhomogeneous magnetic field. In a superconductor, however, the current loop will be established on the
specimen according to the disposition of the external field relative to the specimen. Similar to the coil, a
superconducting object will assume an appropriate equilibrium position and attitude in an external field;
unlike the coil, however, there are no restoring forces acting on the specimen when it is disturbed from its
equilibrium position. Because the current path then adopts a different chain of covalent orbital lobes, a new
equilibrium state may be established within the same specimen orientation by altering either the specimen
position or magnetic field conditions.
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Figure 51. Diagrammatic representation of the Meissner flux expulsion/levitation effect from induced diamagnetism in
a superconductor.
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Without external mechanical assistance to alter the carrier condensation energy (or degree of polaron
alignment) AG (= H 2/8r), the spatial relation between the specimen and magnet is fixed except for rotation
about the magnetic field axis. Rotation about an axis perpendicular to the magnetic field or any translational
adjustment requires an energy input to establish a new equilibrium current condition (thus precluding any
restoring force effects).

The mechanical aspects of the Meissner effect, therefore, lend further credence to the conclusion that
the supercarriers are part of the binding forces of the lattice and do not exist independently as unbound
electrons.
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7. LARGE-POLA? N SUPERCONDUCTING SYSTEMS

A generic model of the MO energy levels for a metal cation (M) in an octahedron of ligands (L) is shown
in Figure 52. For simple metal oxides, e.g., MgO, the lower energy bonding orbitals are principally oxygen
states and are occupied by 2p electrons of the stable Ol gands, while the higher energy antibonding orbitals
represent 3d, 4s, and 4p states of the less stable metal ion (see Appendix A)and are occupied by the corre-
sponding electrons of that particular cation.3* The influence of the crystal field (important for ions of the
transition elements) is indicated by the splitting of the five degenerate free ion 3d states into ¢_and t, terms.
Where extended delocalization occurs from orbital overlaps that reach beyond nearest neighbors, multiplici-
ties of these MO levels form the energy bands (see Figure 12) used for analyzing collective carrier systems
(i.e., metals and band semiconductors) that involve unbound electrons and holes. For the collective carrier
extreme, a partial band model version of Figure 52 that is adapted for Cu?* is drawn in Figure 53. In the context
of covalent electron transfer, the MO format will be used to survey specific ionic/covalent systems for which
superconduction properties have been reported in mixed-valence (large-polaron) compositions.
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Figure 52. Generic MO energy level diagram for a & cation in an oxygen octahedral complex.

31In quantum mechanical terms, the lower energy of the free-ion ligand wave functions X, provide the
dominant contribution to the hybrid bonding state §, = C, ;X + C X, , WithC,>>C, . Forthehigherenergy
antibonding state §, = C,,X,, + C,,X,, the reverse is true, with C,;>> C),. In more covalent combinations,
X and X, are closer in energy, and C,, ~ C, in the resulting hybrid orbital.
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Figure 53. Band model approximation of the MO states of a Cu perovskite, indicating a partially filled antibonding
band.

7.1 SYSTEMS WITH 34-2pc BONDS
711 Cu**-0*-Cu*in A,BO, and Layered Perovskites (p-Type)

Because the superconducting cuprates (Cu perovskites)>> were the principal subject of the original work
on this theory [1], it is appropriate to begin this discussion with a review of the orbital states and occupancies
of the Cu?*-0?--Cu** superexchange combination, which leads to superconduction that is confined to select
Cu-O, planes that occur as part of the B-lattice oxygen coordinations in perovskite-type lattices.

Although the large-polaron concept implies that the region of mixed-valence condition is local with
carriers tethered to fixed polaron sources, it should be recognized that the valence state is not a fixed entity
in cases where itinerant polarons exist through extended covalent delocalization. In accord with the (CuO)*
molecular ion concept adopted in Appendix B, the transfer cations in these partially covalent compounds
assume average (noninteger) valences lower than their nominal ionic assignments because the bonding

351n a generic sense, this means 180-deg cation-anion-cation bonds and would include a growing family of
complex oxides with square planar (Cu-O,) building blocks.
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electrons become shared among the ions, both Cu and O, within the large-polaron cell.3¢ Effects of covalent
bonding have been estimated from the orbital reduction factors of transiton-metal complexes as determined
for paramagnetic resonance measurements of g factors and spin-orbit coupling constants. In the case of Cu?*
in Tutton salts, for example, the reduction is about 15% [94]; if applied to the oxide, the actual ionic charges
would be Cui-7*0!-7-. For want of asuitable systematic means to determine these effective valences, however,
the integer valence values of the free ion oxidation states will be maintained in the discussions that follow.

To examine covalence involving the unfilled d shell of a transition series, it is first necessary to establish
the crystal-field (point-charge model of ionic lattice) splittings for the particular system. In Figure 54, the
order of energy levels for the five 3d orbital states are displayed in the evolution from cubic (0,) through
tetragonal/orthorhombic (D A h/DZh) of the Laz_xerCuO , System, to the extreme cases of pyramidal (C 4V) and
planar (C,,, extreme D, ) coordinations of YBa,Cu,0, and the more complex layered compounds. In the
planar model, only the x-y plane is involved, so the last remnant of the cubic crystal field is 10 Dg between
the dx2_y2 and dxy. In the generic MO diagram (Figure 52), the 10 Dg splitting is explained by the energy
instability of the antibonding e relative to the nonbonding 1,, states [95]. Under the further influence of the
orbital overlaps, the upper d 22 (and to a lesser extent d2) then divides into bonding and antibonding states,
while the remaining d states are presented as unchanged in energy and become nonbonding (actually &
bonding to the ligand), as shown in Figures 55 and 56 for the tetragonal and square-planar cases, respectively.

In the perovskites with anisotropic superconductivity, the Cusites are either tetragonal (with an orthorhombic
component under some conditions, possibly caused by a Jahn-Teller stabilization that occurs as part of the
condensation process) or square planar, and the occupancies of the d states are shown in Figure 57. As previously
reported [1], the d 2 orbital state directed along the crystallographic c-axis is empty, thereby precluding the pos-
sibility of c-axis superconduction. The dxz_yz antibonding orbital state is the transfer path both for superconduction
in the a-b plane with single occupancy in the Cu?* (@) member and empty for the Cu** (@*) memberina low-spin
(S = 0) state. It should also be pointed out that because the Cu** (d%)ion represents a positively charged mobile
hole with § =0, it satisfies the requirements of a boson and could be viewed as such in any interpretation involving
conventional superconduction theory.

The source of polarons differs among these compounds. In the simplest case [2] of the
I..a3*2_xSr2"I[Cu2"l_xCu3+ JO, system with maximum T, = 40K, Sr** ions are fixed negative charges in the
A sublattice, and the mixed valence occurs as tetragonally coordinated Cu®* holes that are electrostatically
tethered to the nearest Sr** ions, thus making the conductivity p-type. A modification of this systerh that
introduces the pyramidal coordinations [49] is L.a“z_xSrz"xCa[Cuz*l_xCu“ J,0, with maximum T_ =60 K.
As discussed in Appendix D, this modification to the crystal field may explain the increase in T . For the
YBa2Cu30y system with Tc = 95 K [3], the situation is more complex. The mixed valence occurs here as a
resultof oxygen vacancies that establish polarons in both the planes of Cu(2)-O, pyramids and Cu(1 )-0, linear
chains; chemical formulas highlighting proposed Cu valence distributions that vary linearly with polaron
concentration (see Appendix D of Dionne [1]) may be written:

YBa,[Cu® Cu*

2+ I+
Sr2-yla y/4-3n]2[C“ Cu ]0‘v for6.67<y<7,

11-3y2 3y2-10

36 This traditional view has also been expressed by A.W. Sleight in a review of superconducting oxide
chemistry [93]).
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and

with Cu(1) and Cu(2) site valences v(1) = 1.5y — 8 and v(2) = 0.25y + 0.5, respectively.

2+ 3+ 1+ 2
YBa[Cu™, Cu™ iy 3plplCU ™ 0 5nCU™" 5 p 510,  for6<y<6.67,
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Figure 57. p-type 3d I2_y2-2py0' Ci?*-0-Cu?* covalent transfer in 180-deg perovskite bond geometry for & — d¥(low-
spin).

As suggested by Figure 58, superconduction is likely to occur in the Cu(2)-O,, planes of the pyramidal
complex, because the Cu®*>*) content of the Cu(1)-O ,planes would phase over to Cu 1+ aty=6.67 (see
Figure 59) as a result of oxygen vacancies within the plane that create the Cu(1)-O, chains. Moreover, these
vacancies would break up the continuity of the transfer couplings necessary for superconduction. The origin
of positive mobile polarons, therefore, would arise from the fixed negative charges of 0% ions filling the
vacancies, as y — 7. In Sr-free La2CuO 4e5 [96], the excess oxygen is more correctly described by Laz_x[Cu2+ -

Cu“x]O » Which is brought about by La cation deficiencies. As determined earlier, a threshold value of x,

= (0.08 (or & = 0.04) is all that is necessary for the onset of superconduction.
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@Y @Ba OO .Cu

Figure 58. Ordered A-layer structure of YBa,Cu _,Oy, showing breakdown of CuO , complexes as y decreases from 9
(hypothetical in this case). Aty = 8, oxygen is removed from YO , planes and Cu(2) ions are square-pyramidally coor-
dinated (i.e., CuOs), but retain the C, symmetry axis. Aty =7,Cu(l) ions become linearly coordinated in the x-y plane
(orthorhombic phase) with uniaxial superconduction expected; Cu(2) ions retain square-planar coordination in the
x-y plane with planar superconduction possible. Aty = 6,Cu(1) planes are fully depleted of oxygen and Cu(2) ions lose
mixed-valence with only 2+ species present (see Figure 59).

Partial verification of this valence model was reported by Tranquada [41], who determined experimen-
tally that the average spin of the Cu(2) ions is 0.66 Bohr magnetons (npaty= 6, and that the Cu(1) sublattice
is diamagnetic. This resultindicates that most of the Cu(2) ions are 2+ (with some spin canting likely reducing
the effective spin values) and that the Cu(1) ions are 1+, which is consistent with the model in Figure 59. The
occurrence of Cu'* ions in the Cu(l )-02 chains should be expected, because its large radius (~ 0.96 A)
precludes occupancy of the Cu(2) pryamidal sites; furthermore, there is already ample evidence for d'®
configurations to favor linear coordinations {97].
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Figure 59. Proposed linear valence model of Cu(l) and Cu(2) as a function of the oxygen content variation and
distribution depicted in Figure 58.

Aneven more intriguing confirmation of this originally proposed linear Cu valence distributionhas come
from the borid valence sum analysis of Brown [52]. The results plotted in Figure 60 indicate that the Cu valence
distribution is basically linear, but with an oscillation about the relevant portion of the linear curve from Fig-
ure 59 that is added here for comparison. Among the implications of these results is the possibility that the
apparentanomaly in the variation of T _with yshown in Figure 23 may be explained entirely by the nonlinearity
of the valence distribution with polaron concentration.

Together with the compounds discussed above, the parameters for more complicated layered struc-
tures are summarized in Table 7. In cases where the Cu resides principally in sites with O, coordinations,
which may provide E, | hop > 4 meV (see Appendix D), T — 120K. For the Bi** (Sr2+ Caz*) Cuz*a") Og.s
system [6], the optimum Cu** concentration x = 0.33 occurs because of a combmatlon of excess O2 (| e.,
8 =0.17) or the occurrence of monovalent calcium [98]. The Y\ ad Baz" Caz';__ Cu2*3¥ 0 442045 COMPpOUNds
[99] derive their polaron sources from either fixed-valence cation deﬁcnencncs (i.e., excess 02-) or the mixed
valence of Tl, which can appear as 1+ or 3+ to suit the ionic size or charge requirements of its locale. With
such a dual-mixed-valence condition present, the likelihood of higher polaron ordering, i.e., smaller B, is also
increased.

Another source of the enhanced T, values could be larger b values that result from a covalent coupling
between the d,2_,2 - 2pc antibonding state and the 6s orbital of Bi3*or TI'*. Anincreased exchange integral
would give rise to a smaller x, A measurement of the W parameter for the compositions with maximum T
could help to sort out these possibilities.
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Figure 60. Nominal Cu valence as determined from linear model of Figure 59 compared with valence bond sum
analysis of Brown [52] for YBa,Cu 30,.

7.1.2 Cu'*.0>-Cu?®* in A,BO, Perovskites and Layered ABO, (n-Type)

Through Ce** substitutions in A sites and the creation of O~ vacancies by a reducing atmosphere anneal,
Tokura et al. [100] reported superconductivity with T =24 K in Nd**,_Ce#, (Cuz*l_z_zyCu'*“zy)OH for
2=0.15 and y = 0.04. As a consequence, stoichiometry is maintained with a Cu'* concentration of x = 0.23.

Although the critical temperatures of this system are not particularly large, and because Nd** is
a magnetic rare-earth ion with S = 3/2, superexchange involving the A sublattice may result in
Ce#* clustering that would lead to larger B parameters. These results are very significant and provide
insight about the microscopic mechanism of superconductivity. The substitution of tetravalent cations '
into the A sublattice creates negative polarons (electrons), and the appearance of superconduction verifies
the prediction of n-type Cu'*@"¥ orbital transfer published in the initial report on the CET model ([1],
Table 1). As shown in the orbital transfer diagram of Figure 61, the d,z_yz orbital is again the transfer
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path. Here the Cu'* ions provide the S = O states required for spin transfer and the onset on magnetic
frustration in the Cu2* host lattice with S, = 1/2 (see Table 5). In addition, the existence of n-type
superconduction significantly weakens the argument that high-T,. phenomena are based on hole transport
through the oxygen sublattice, i.e., local peroxide O'- formation. For the oxygen ligands to provide
conduits for electrons, O3 ions would have to be postulated, which is a situation even more unlikely than
the peroxide case.

TABLE 7
Cu Perovskite Superconduction Parameters
Tc (max) E,m,a

Compound Coordination (K) x (max) (meV) p2
p-Type
La,_Sr,CuO, 0, ~40 0.2 25 | 07
La, ,Sr.CaCu,0O, O, ~60 0.2 4 0.7
YBa,Cu,0, O, ~95 0.25 4 0.57
Bi,(Sr.Ca),Cu,0, ; o, ~120 ~0.33 (>4) |(<0.5)
T,Ba,CuO, 0, ~80 25) |(<0.5)
T,Ba,CaCu,0,,; O, ~110 @ | (<0.5)
Ti,Ba,Ca,Cu,0,,.5 0,0, ~120 (>4) |(<0.5)
n-Type
La,_,Ce,CuO, O 24 0.23 25) |(>0.7)
sr,_Nd,Cu0, o, 40 0.14 @ |03
8( ) Indicate suggested values

Another interesting feature of these compounds is the necessity to create oxygen defects as part of
their preparation. In this case the Cu'* ions occupy square planar sites (Cu-O,) with an occasional
missing oxygen. As shown in Figure 58 for YBa,Cu,0,, the Cu(l) sites that are proposed to harbor Cu'*
ions are also square planar to linear, as y falls below 7. Because Cu'* ions are usually not accepted in
sites of higher coordination, e.g., octahedral Oy, due to their large radii (~ 0.96 A), this result is entirely
consistent with traditional metal-oxide chemistry.
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Figure 61. n-type 3d2_2-2p,c Cu'*-0-Ci?* covalent transfer in 180-deg perovskite bond geometry for d'0 — &.

More recently, a primitive layered n-type family Sr2*_Nd** (Cu?*,_ Cu3* )0, was reported by
Smith et al. [101]. In this case, the Cu ions reside in planar coordinations with the A-sites forming oxygen-
free layers that are interleaved between Cu-O, planes. The n-type compositions are noteworthy because
of the increased T, = 40 K and the lower value of x,,,,, = 0.14. In the context of the foregoing discussion,
these results may be explained by an Ehov that is higher than that of the compound containing Ce**, but
with a larger B parameter, as compared in Table 7. This interpretation remains in accord with the general
CET conciusions that T, through £, has a crystal-field dependence related to oxygen coordination
(discussed in Appendix D) and that polaron dispersal is essential for high T,.

To conclude this discussion of the layered cuprate compounds, their superconduction anisotropy
that was explained in the first report [1] will be reviewed. Apart from the fact that these materials feature
mainly uniaxial crystallographic symmetry, there are two specific causes for the absence of superconduc-
tivity along the c axis, i.c., normal to the x-y plane. First, the required Cu?*-0*~-Cu?* covalent linkages
are not present in the z direction. This condition in YBa2Cu30, may be confirmed by inspection of
Figure 58 for y < 7. A second reason for the conduction to be confined to the x-y plane is that the d 2
orbital wavefunction (not shown in Figures 57 and 61, but included in Figure 62 for the nickelate case)
is fully occupied in the Cu'*, Cu?*, and low-spin Cu** ions, and therefore could not provide a transfer
path in the z direction even if the bonding geometry requirements were satisfied.
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Figure 62. n-type 3d,2-2py o N2*.0-Ni3* covalent transfer in 180-deg perovskite bond geometry for d*(low spin) —
d’(low-spin).

7.13 Ni#*-0*-Ni** in A,BO, Perovskites (p-Type)

Another entry in Table 5 that merits attention is La%*, Sr?* (Ni?*, Ni** )O,, for which planar
superconduction effects were reported [37] at T < 70 K with x = 0.2. In this system, the transfer orbital
is d2 (see Figure 62), and the low-spin state must occur partially on both Ni2* (S = 0) and Ni** (S = 12)
cations [55], as explained in Appendix F. ‘

Although the occurrence of conditions for superconduction with the nickelate compounds is prob-
ably tenuous at best, the effects reported lend further credence to the notion that covalence involving d
electrons create S = 0 configurations to produce superconductivity in oxides.

72 SYSTEMS WITH 6s, 6p-2pc BONDS

In the foregoing Cu and Ni cases, the superconductivity is confined to planar “sheets,” e.g., Cu-O,
complexes, and consequently is two dimensional. This constraint results from the chemical bonding
involving the d,2_2 orbital that is peculiar to Cu?*3%) in crystal fields of tetragonal or orthorhombic
symmetry. There are, however, cubic metal oxide superconductors with isotropic properties.
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72.1 Bi*-0*-Bi** in ABO, Perovskites (p-Type)

The discovery of high-T . superconductivity (T, ~ 30 K) in the diamagnetic cubic perovskite [102]
BaZ*_K!' [Bi**,_Bi**,)O, ; brings into focus two important aspects of this phenomenon:

* d electrons are not required for superconduction, because Bi#** has only a single electron in
the isotropic 6s shell outside its closed 54'0 shell and Bi** has an empty 6s shell.

» Cooperative magnetic ordering is not required because neither ion participates in magnetic
exchange (although Bi** is paramagnetic with the unpaired 6s electron).

In this case, the orbital transfer path is 6p-2po-6p, and the directionality of the conduction is three
dimensional but restricted to the x, y, and z axes of the p .y lobes. The corresponding MO diagram with
electron occupancies is given in Figure 63, with the single electron transfer occurring between the
antibonding 6p-2pc antibonding states, again separated in energy by Ehop. Although it is convenient to
think in terms of s-electron transfer because the outer valence electron of Bi** occupies the 65 orbital state,
the actual transfer orbital becomes 6p when the order of energy levels is determined from an MO calculation.

154939183
Bi**, Pp3* ——O-—— 8s5-2pc
CATION STATES ANTIBONDING
6p
6s
HALF-FILLED STATE

Figure 63. MO diagram for a Bi**, Pb’* in an octahedral 02“5 complex.

In this series, the nominal K'* concentration for optimum T_ was initially found to be z = 0.4, which
would very likely produce a p-type polaron concentration x < 0.33 if an oxygen deficiency J of only 0.04
were present. Later measurements [103] on the same system confirmed that the polaron concentration for
the highest T_ is x = 0.3, with T_falling off quickly as x — 0.5. These results are also consistent with
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Epop < 2.5 meV and b ~ 0.5 to 0.6, typical of the Cu perovskites; for x < 0.25, the cubic phase of this
family is lost, and there are, unfortunately, no x, data to estimate the concentration threshold x,.

722 Pb*-02-Pb* in ABO, Perovskites (p-Type)

An earlier version of this cubic perovskite contained Pb****) as the transfer pair in the formula
Ba*[Bi** Pb> | 114 PP*™ (1 _1y14]03 and showed p-type superconduction over a composition range
0.05 < z £ 0.35, or 0.045 < x < 0.26, because x = z/(1+z) {104). In this series the curve of T, versus x
bears a resemblance to Figure 21 for La, Sr,CuO, with a maximum T, = 13 K at x = (.23, and then a
sharper fall to zero at x = 0.26, thereby suggesting a B ~ 0.7 that is characteristic of the Cu2*(*) materials.
Pb immediately precedes Bi in the periodic table, therefore the Pb3*4*) pair has its electron configuration
identical to Bi**>*) with nearly identical ionic mass and similar ionic radius. In this case, however, the
B-site Bi** ions act as the polaron sources, rather than A-site K'* (or Ba?*) ions of the Bi**>*) compound.

7.3 SYSTEMS WITH 3d-2pn OR 3d-3doc BONDS

For the lower part of a 4" transition series, only ¢, o orbitals are occupied in octahedral coordinations,
and there is no cation-anion ¢ bonding. There are, however, two other possibilities that are diagramed in
Figure 64: First, (tzg-2pu)-(2p1t-t28) bonding that is usually ignored in MO first approximations where e g-2po
bonding is dominant, and second, direct cation-cation 1y 120 bonding with z, o orbital lobes that reach across
the face diagonals of the cubic cell.

7.3.1 TP*-Ti* in ABO, Perovskites (n-Type)

The first example of superconductivity in a mixed-valence oxide was reported by Schooley et al.
[105] with the cubic perovskite Srz"[Ti“,_xTi:"‘x]OLy (T, = 0.25 K), where x = 2y. As stated, it should
be pointed out that the polaron would be negative for y < 1, and the superconductor would be n-type.
In this case the active part of the MO diagram (see Figure 65) is a simple two-level bonding/antibonding
combination with the unpaired spin of the Ti>* ion stabilized in the bonding state. For the cubic perovskite
structure, the face of a unit cell is shown in Figure 64(a), where the by orbital lobes are seen to be separated
by V(2)a = 5.6 A. With such a long throw across the diagonals, direct d,-d, G overlap should be
negligible, and the transfer efficiency n would be much smaller than in the Cu?*-O%-Cu?* superexchange
systems, which may account for the very small value of 7. In this case, (1, -2pn)-(2pn -1, o) bonds may

be the more efficient transfer paths. As listed in Table 5, other ionic candidates for this type of transfer
are V4G9, Nb+64), and Ta*+(9),

732 TP*-Ti* in AB,O, Spinels (p-Type)

In the spinel LiTi,0,, the distance between cations across the cube face in Figure 64(b) is one-half
that of the perovskite. Consequently, the b integral for dx,‘dxy" bonds is substantially larger, and the
resulting higher carrier density could explain the critical temperatures greater than 10 K. As reported by
Johnston et al. [106], a p-type Li-deficient series with generic formula Li'*,_Ti** [Ti>* , Ti*,_, 10,
was found to be superconducting for smaller values of z. In this case, Ti“’z are fixed polaron sources

in the A sublattice. With z = 0.2, a B-sublattice polaron concentration of x = (1-3z)/2 = 0.2 was found
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to have T = 12.2 K. A maximum T, of 13.7 K was observed in a two-phase specimen. With fixed
sources in a different sublattice, this situation is very similar to the large-polaron Cu2*-O>~-Cu3* cases,
where the positive carriers have S, = 0 and the host lattice ions have §; = 1/2 (see Table §).

Another composition regime of interest for this system is where n-type conduction is created by
substituting excess Li. Because superconduction is observed when x — 0.5 (¢ = 0), the material behaves
more in the manner of a metal and will be treated as such in Section 8.5.

14539104

PEROVSKITE CUBE FACE SPINEL CUBE FACE

Figure 64. Covalent transfer paths for 12‘-bccupied cations: (a) perovskites with 12e-12,0 (weak) or 12‘-2px-2pu~tzg
(moderate, if x overlaps are significant), and (b) spinels with th-tz,o(moderate).
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8. COVALENT ELECTRON TRANSFER IN METALS

Although the principal subjects of this report are the origin and properties of superconductivity in
the high-T . metal oxides, for which theories that apply well for metals fail to explain the occurrence of
superconductivity above T ~ 30 K, speculation on how the CET theory may apply to systems with
conduction electrons would not be unreasonable.

In Section 3.1 it was pointed out that extrinsic semiconductors might be superconducting at high
impurity concentrations. At temperatures below the excitation threshold, the carriers are bound to their
impurity sources and could be thought of as small polarons. With very high impurity densities, itineracy
through covalent transfer or tunneling may be sufficient to establish the type of real-space carrier cor-
relation discussed earlier. A more interesting (and real) situation occurs in metals, where the free carriers
could be considered to result from excitation gaps of energies in the millielectron volt range within the
conduction band, i.e., the concept of a metal as very narrow-band semiconductor. If the theory of mo-
bility-activated conduction is generalized to include metals,3? the transition from insulators to metals
would occur at T = Ehoplk, as shown in the curves computed from Equation (43) and plotted in Fig-
ure 66. One could, therefore, argue that all materials eventually become insulators before T reaches
0 K. Of the many facets to this theory, the one that must serve as a common denominator for all materials
is the notion that localized covalence is present in the relation of carriers to the their lattice sites. For
materials with a free electron gas at normal temperatures, this would imply that the free electrons are
actually activated valence (hopping) electrons that recombine with their ion sources as the material
approaches an insulating condition prior to condensation into a superconducting state in the limit as T
falls to T‘..38 In this sense, E‘hop would represent either a gap energy or an activation energy, depending
on whether a collective or isolated carrier approach is used. :

8.1 THE GOODENOUGH » PARAMETER MODEL

To introduce the subject of ordered conduction in collective electron systems, it is appropriate to
review some important earlier work by Goodenough on metallic oxides in which relationships of elec-
trical conduction to covalent bonding were proposed. In two comprehensive reviews of metal oxides
[7,42], Goodenough discussed a model for electrical conduction that served as part of the basis for the
CET theory. The main theme of his concept was that the energy of the covalent transfer integral relative
to the energy level separation (or band gap) for the ionization reaction M™ — M** 4 e=_U  ie., b/
U, determines the transition from the localized (small polaron) condition of electron hopping to the beginning

37At low temperatures an exponential function representing ionization to the free-electron state may be
expected to modify the product of carrier density N and temperature-dependent mobility such that ¢ ~
Np(ncxp(—E,w/kT), where Ehop would represent a local pair-breaking gap energy.

38 This is not a new concept, having roots in the earliest theories of electrical conduction. See, for
example, Schoenberg’s introduction [78].
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of collective (large polaron to band) behavior among d electrons in unfilled shells at b — b . For values
of b > b, additional thresholds were defined, as shown in the energy E versus N(E)dE population charts
of Figure 67. For static magnetic ordering, b — b, where the bands begin to overlap. Eventually, b
approaches the higher threshold b, and a necessary condition for the occurrence of a BCS-type of
superconduction is established as the two bands merge to a single half-filled conduction band. Within this
format, the material systems were also characterized according to (n, * c), where n, is an integral number
of electrons in an unfilled shell and 0 < ¢ < 1 is a parameter to represent the nonintegral case. In the
analysis that followed, both the ¢ = 0 and ¢ # 0 cases were discussed in reference to a complete spectrum
of properties.
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Figure 66. Variation of resistivity minimum as a function of E, hop®

In the context of the CET theory, ¢ # 0 is the mixed-valence case, and the conclusions of both
concepts are generally compatible. As mentioned earlier, however, for the covalent conditions of the Cu
perovskites, where 1/2 < ¢ < 1, single energy levels were used to approximate the narrow bonding and
antibonding e, bands for the apparent case of b 2 b. For the mixed-valence situation, the energy pa-
rameter U is not involved, being replaced by the small-polaron activation energy Ehop. but the b = b,
threshold is a consideration because it represents the point of band overlap (b ~ U) for the ¢ = 0 case.
This could mean that magnetic ordering should be expected to be correlated with covalent transfer, a
condition that was discussed at the end of Section 3.5. Because static magnetic order threatens the b 2
Ehop requirement by increasing Ehop, this argument lends further support to the notion that superconduction
can only occur with magnetic dilution enhanced by S, = 0 polarons. One of the points made clear by
the Goodenough approach is the difficuity in describing the state that is intermediate between localized
and collective extremes. In collective covalent systems, where individual orbits broaden into bands, a
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band theory formalism becomes appropriate. Unfortunately, with the overlapping of energy states and
(Hartree-Fock) sciutions of periodic potentials in k space, local information regarding impurity states and
the influence crystallographic geometries is lost. The BCS theory, despite its profound success in inter-
preting many important facets of superconductivity, does not directly account for effects related to local
electronic structure and chemical bonding.

145391-87
* Mimip
A ---->
T U
2 vV oM~
b=0 b=b,
LOCALIZED COLLECTIVE
>
v
[+ 4
w
<
w coswasnns

b=b

b=b,
MAGNETIC ORDER SUPERCONDUCTION

Figure 67. Energy-band diagram based on Goodenough's ¢ = 0 case of excited charge transfer (AU # O from
Figure 2).

With the CET theory applied to oxides, dipoles occur from the mixed valence created by the
chemistry and off-stoichiometry of a particular system (the Goodenough ¢ # 0 case). This model is based
on the localized extreme, which makes it possible to examine the bonding and electron exchange transfer
in real space for specific compounds where crystallographic considerations are of paramount importance.
In pure metals ¢ = 0, and there are no fixed polaron sources; the question of local ordering and large-
polaron radii overlapping is therefore moot, and a collective model may be applied. There is, however,
a need to retain the CET formalism of real-space covalent interactions to examine another possibility that
arises from the exchange stabilization energy associated with spin-pairing in orbital states.
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Although relationships between the CET theory for mixed-valence (¢ # 0) oxides and the more
general treatment described above can provide additional insights, the depth and complexities of
Goodenough’s analyses include a variety of physical properties that extend well beyond the present
discussion, and interested readers are encouraged to consult the referenced texts. The main reason for
introducing these concepts here lies more in the implications of the ¢ = 0 case (no fixed polaron sources),
which is the usual situation in a metal. Here there are two possibilities, that differ according to whether
the valence electrons per atom are odd or even numbers.

8.2 REAL-SPACE PAIRING IN METALS

For superconductivity in the collective carrier extreme, spin-pairing is required to satisfy the Pauli
exclusion principle. To be consistent with the CET theory the pairing must occur in real space. Unlike
the isolated dipoles of mixed-valence oxides, however, the dipoles in pure metals or intermetallic com-
pounds that would cause dynamic ferroelectric condensation could not arise from mobile ions electrostati-
cally bound to fixed sources. If dipole formation is postulated in metal structures, they would have to
“exist locally between adjacent atoms as part of the general bonding scheme through which the sponta-
neous electron transport would be dominant at low temperatures T < Ehoplk which is the insulator re-
sistivity regime of Figure 66 for normal carriers. Ehop would be the energy required to break a pair and
create free electrons (quasi-particies in the BCS sense). At higher temperatures (the metallic resistivity
regime of Figure 66), the normal state conduction would be the result of electrons continuously activated
out of their traps to create the partially filled conduction band depicted in Figure 14.

In systems composed of atoms with unpaired valence electrons, pairing must occur through virtual
dipoles as part of the condensation process; for systems with even numbers of valence electrons per atom
the pairing requirement is already satisfied and condensation would be associated with the formation of
correlated polarization of the atomic medium.

8.2.1 0dd Electrons (Virtual Ionic Dipoles)

Consider the simple case of two covalently linked, half-filled orbital states (odd numbers of valence
electrons) that form the one-dimensional antiferromagnetic chain through polarization exchange as pic-
tured in Figure 68(a). If the electrons become localized on their atoms at low temperatures, their spins
would be aligned according to the dictates of the J constant; however, if stabilization is gained by the
creation of dipoles through the reaction

M)+ M) = M)+ M T+ AU , (102)

where M is an atom with a single s or p electron (T-) outside a closed shell, and AU is the net energy
that combines ionization potentials, closed-shell stabilization, and Coulomb attractive energy of the quasi-
ionic bond. For the reaction of Equation (102) to be stable, AU>0. In the CET context, therefore, the
activation energy becomes :

Em =AU , (103)

and AU is used to set the statistical partitioning for n, in Equation (30), from which n{ and finally A&
are determined through Equations (59) and (60), respectively.
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Figure 68. Conceptual model of the condensation of virtual dipole with S = 0 sites: (a) uncondensed state, T > T_,
(b) formation of dipoles, and (c) correlated pair transfer in real space.

Where antiferromagnetic alignment is favored as suggested in Equation (102), a pattern of virtual
dipoles may occur as depicted in Figure 68(b). The conversion of AG to the energy of current density
may be represented by the momentary snapshot of a dipole chain depicted in Figure 68(c) with odd
electrons now paired on the same ion in § = 0 configurations. Exceptions to this rule, of course, would -
be the ferromagnetic metals, e.g., Fe, Co, and Ni, where J imposes parallel spin alignments aIh.

The establishment of the superconducting state would then take place first through virtual dipole
condensation and then by dipole alignment of the kind described earlier for the ordered large polarons
of the ¢ # 0 case. Similar to the ¢ # 0 case of fixed polarons in an antiferromagnetic lattice, Epop for
the chain of "condensed” dipoles would also be the energy for thermal activation of an individual electron
and consequently the break-up energy of a real-space electron pair.

As implied above, virtual dipole formation is not likely in an insulator because electrostatic fields,
local or externally applied, are subject to less screening by electrons. Consequently, the dipole formation
in insulators would be more energy expensive than in metals where K is greater, thereby reversing the
sign of AU. In addition, ionic lattices may not readily tolerate the size variations required to accommo-
date, for example, fixed Cu'*-Cu** combinations on a large scale. Moreover, insulators with b values
sufficient to allow covalent transfer must be derived from ¢ bonds, which unfortunately involve the partially
filled e, states that are also responsible for antiferromagnetic ordering. With T,, ~ 500 K for these
compounds, the magnetically ordered state would be highly stable at low temperatures, and would pre-
clude the occurrence of the frustration necessary for superconduction.
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8.2.2 Even Electrons (Polarized Atoms)

For the classic soft-metal superconductors, Hg, Pb, and Sn, the outer shells of the individual atoms
have 6s2, 6.92p2, and 5.r2p2 valence configurations, respectively. These elements are of the unfilled p shell
category defined by Matthias [108] and described in Section 8.4. In their collective conduction states
these paired electrons become thermally excited to form a "free” electron gas, but at very low tempera-
tures phonon excitations are greatly diminished and relocalization of the valence electrons to their original
sites could create a chain of polarized atoms. This result would represent the simplest example of a real-
space pair at each lattice site for transfer through the bonding states in the particular system. In this case
Ehop would also represent the pair-breaking energy associated with the creation of a normal electron
without being reduced by the energy required to establish the virtual dipole.

With both types of metal superconductors proposed, the dipoles formed as part of the condensation
would link covalently within very short distances. Because very high ordering would exist in the absence
of scattered polaron sources, nearly complete participation of the dipoles would be required before super-
currents could begin to flow.

83 T _AND THE W PARAMETER

To compare the superconduction parameters of metals with those of the high-T . oxides, it is nec-
essary to examine the basic relation for the critical temperature, now a ~~mbination of Equations (11) and
(39),

T, = (af2) (hvp)lkW
or
T, = (@2) oW |, (104)

where it is assumed that Ehop = E, and k© = hv,,. In metals, the Debye temperature is usually less than .
500 K and often less than that of its corresponding oxide, particularly for heavy metals like Hg and Pb.
The elastic coupling constant o is also smaller in metals for reasons that relate to the tendency for
covalent compounds to have smaller coefficients (see Table 1), and also because of the larger electron
screening effects in metals (large effective K), discussed further in Section 8.5 and Appendix G.

Perhaps a more intriguing reason for the smalier T, values in metals lies in the larger values of the
W parameter. One immediate result of the assumption that virtual dipoles may form spontaneously in
an ordered chain is that the cell radius in elemental metals is limited to a single lattice parameter, i.c.,
A = xo"') ~ 1.39 In addition, because large polarons cannot form in metals Xo/x = 1 and x & — 1. The
question of polaron source dispersal is moot in a pure substance, P ~ 1; therefore if the b integral is
reasonably large, it may also be assumed that 1 ~ 1. As a consequence, W should be substantially larger
than that of an oxide, based on a simple estimate from Equation (39). Based on the earlier observation

391n cases where there are no ligands, the definition of A changes from Equation (40); because every site
would be contributing carriers, the maximum x is 1 instead of 0.5 for the oxide case. Where the metal
has a filled s shell, there are two available carriers per atom, and the supercarrier density would be
potentially a maximum.
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that W = 1.76 provided a good fit to the universal n.5(Nnf(0) versus T/T, curve in Figure 41, X)X ¢ IS
readily computed to be 0.83 from the complete relation for W = ln[l—x/xcff]" which must apply here
because x ¢ ~ x, The variation of W with x/x is plotted in Figure 69. For this situation, one may
assume that x, = x,, and that x_q ~ x.
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Figure 69. W parameter as a function of x/x . with regimes of oxides and metals indicated. Note that the linear
approximation may apply only to certain oxides.

In summation, the T, values for metals could be small because of an inherently low Ehop and a larger
W. To estimate a practical limit, consider upper limits for o of 0.01 and © of 500 K. If W = 1.76, then
T, should not be expected to reach values much greater than 25 K. The smaller W value (~ 0.5) and
higher T, values for oxides reflects the fact that superconduction can be established with fewer carriers,
i.e., x/x ~ 0.1. Whereas the available carrier density N is even further reduced in the ABO, and A,BO,
perovskite families because of the presence of several noncontributing sites, critical fields and current
densities are not only fundamentally lower in magnitude but suffer an earlier fall off as T — T_ because
of the lower W values (see for example, Figure 41).

84 THE MATTHIAS MODEL AND THE PERIODIC TABLE

Prior to Goodenough’s work the influence of chemical bonding and the importance of unfilled p
and d electron states in superconductivity had already been inferred by the observations of Matthias [108],
who produced an empirical model for predicting the likely occurrence of superconductivity in many
metals and alloys, as well as for estimating the critical temperatures, according to

T, ~ (VI/M) F(n) , (105)
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where V is the volume and M the mass per atom, n is the number of valence electrons, and a is a constant
between 4 and 5. The most curious aspect of this model, however, is the empirical function F(n) that
is reproduced in Figure 70. Simply stated, F(n) means that a first requirement for superconductivity is
the existence of an unfilled p or d orbital shell. Refinements then place an n dependence on T, which
oscillates across the d shell, peaking at odd n values (suggesting that polarization exchange between two
half-filled orbits may increase Ehop) but growing monotonically across the p shell.
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Figure 70. Matthias empirical function F(n) relating T 1o the average number n of valence electrons per atom.

The success of the Matthias criteria for superconductors extends even to alloys and intermetallic
compounds in which none of the individual constituents alone meet the conditions but in chemical
reaction produce the required d or p electron occupation. Like all theories, empirical or otherwise, this
model does not apply universally. Nevertheless, it is sufficiently successful to suggest some important
conclusions that conform not only to the mounting evidence derived from experiment, but aiso to the
basic premises of CET theory:

» Elements with only s valence electrons, i.e., alkali metals and alkaline earths, are not likely
superconductors, suggesting that free electrons by themselves do not contribute to the
superconducting state.

«» Elements with unfilled d or p shells are more probable candidates. This is consistent with
the covalent bond and macroscopic molecule concepts and points to the importance of
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crystallographic geometries. Where s electrons exist in outer atomic shells, it should be
recalled that these electrons descend to p or d MO antibonding bands, as discussed in Sec-
tion 7.2.1.

 Ferromagnetic elements from the upper half of the d shell, i.e, Mn, Fe, Co, and Ni, where
€, orbits influence the exchange in typical octahedral coordinations, do not generally pro-
duce superconduction (unless through superexchange with d-pc bonds), supporting the CET
contention that superconduction and static magnetic ordering are mutually exclusive. These
observations based on the Matthias model can be seen by inspection of the periodic table
presentation in Figure 71.

145391-70
fé'-i T
' ' ’ '
] N N ’
' ' ' ’
' ' ' 1
[ ' 1 :
1---1
Al ' Sio
L} ]
L ]
L [}
1.18 H
Sc 'Y/Q,V' Cr 'Mn ,Fe Ga Ge |
[ ]
'
[ ]
]

1 - -~
W e N 3
A Tc /[Ru A Rh | Pd | Ag .cJ\\

<
D
AN
g
N\

. \E‘g\\ .
N

)
i
®

~d

h, -
©
A
-
-l
)
°
rY
©

\
\\\\ \\
NI
AREN
2L
N\
b
7%
l;;///3) //g»/

w
~
N

b
h

h
N \N

X

\\
N

‘
N
2
A\
-
N
~
b
'
o
»

N
h

: Y r ro==y
: : 1Ce , Pr : Nd :
L
R R s,dELECTRONS s, pELECTRONS
O A T
s ] ' &
Th | Pa | U
137 | 14 | 07

Figure 71. Superconducting elements in the periodic table ([73], p. 338). T values are included where available.

115




If conduction electrons are not necessarily the principal charge carriers in the superconducting state,
and condensation can involve those electrons residing in directed orbitals with overlapping covalent
bonds, the role of the conduction band s electrons remains an open question. Clearly they serve to reduce
local electric fields and increase effective local dielectric constants. In most cases, particularly the
transition elements, overlapping bands may provide the possibility of s electrons condensing into the empty
states of the p or d bands as part of the overall formation of the superconducting state. [Note that crystal
field splittings may not be important in metals, and the 5d orbitals may be degenerate. Nonetheless,
internal spin polarization (Hund's rule) and the highest energy state as the state for transfer must be
considered. This means that the more d electrons, the larger the downward cascade during transfer, and
implies a monotonic increase in Ehop (or Emg) with n.]

8.5 THE ISOTOPE EFFECT

As part of this general topic, the initial realization of the importance of the crystal lattice in
superconductivity should be mentioned. Historically, it arose through the electron-lattice interaction
theory of Frohlich [109,110] that was celebrated by the discovery of the isotope effect and later by its
adoption in the electron-phonon mediation of Cooper pairs that form the basis of the BCS theory. The
presence of an isotopic dependence may also be seen in the above review of the Matthias model, where
an M- factor exists in Equation (105) for T,.

Without burdening this text with the details of Frohlich’s formal analysis, his result for the electron-
phonon coupling in terms of the critical temperature is stated as T, ~ (m/M)'\2, Experimental support
for this relation was initially found in the simple metals Hg, Pb, and Sn, but universal appearance of the
M- dependence has not been forthcoming, particularly in transition metals where the isotope effect is
generally absent (see Table 8). Because there are no polarons here, Ehop is only a pair-breaking energy
without elastic components, meaning that the coupling constant & ~ 0. Thus, the BCS model (or part
of it) may apply best here with E,  ~ hvp,.

TABLE 8
Isotope Effect in Superconductors
Nontransition Metals Transition Metals
Material Exponent Material Exponent
Zn -0.45 Ru 0
Cd ~0.51 Os -0.15
Sn -0.47 Mo -0.33
Hg -0.50 NbySn -0.08
Pb -0.49 Mo,ir -0.33
T -0.61 Zr 0
Source: Kittel [73}, p. 347.
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The notion of electron coupling by phonon mediation later became a lynchpin of the BCS theory,
where a lattice atom mass dependence turned up again through the Debye temperature © (~ M~12) in the
relation T, ~ © exp[-1/N(0)V), derived from the following relations [111]:

A(0) = (2m)w, [sinh(~1/NOW)]™! = 2(h2m)e, expl-1NQO)V] ,
INO)V = 1.14 (h2m)0 /KT, ,
kT, = 1.14 (h2m)o,_exp[-1/N(O)V] ,

or
T ~ ©exp[-1/NO)V] , (106)

for coupling constant N(Q)V << 1 (weak limit), where N(0) is the density of states per unit energy at the
Fermi level for electrons of one spin orientation, (A/2n)w, is the Cooper pair binding energy ~ k©, and
V is the approximate magnitude of the Cooper pair scattering potential that is generally constant, but
suffers a cutoff and drops to zero for states of energy k© away from the Fermi level. By inspecting
Equation (106) it may be seen that N(O)V (typically < 0.3) varies directly with © through the exponential
function, and it is apparent why the BCS theory does not easily account for T, values in the 100-K regime,
particularly when © itself is above 500 K only for light elements.

In the foregoing explanation of the source of E,,, CET also invoked some of Frohlich’s work, but
this time the starting point was his polaron theory for nonmetals [13]. The relation between critical
temperature and trapping energy for the magnetically frustrated situation may be inferred from Equation (11):

T, = E, = (@P) (hvp) , (107)

where hv;, = k© ~ M-'2, In the Frohlich derivation of the coupling constant a, however, there is an
additional dependence of v, through the relation for the density of the polaron phonon cloud

a = 2X(mmk) 2K v, (108)

where K . = KK OP/(K - Kop) is the effective dielectric constant. Here K and K op 3TC the static and optical
frequency dielectric constants, and (K - K op) = K. > the ionic dielectric constant of the plateau that appears
in the infrared or lattice vibration frequency band. In more general terms, K o, may be considered as
proportional to an effective polarizability, which is expected to increase with valence charge and ionic
bond length and with the polarizabilities of the individual ions, e.g., Ag'* with a closed 4d shell is more
polarizable than K'* with an argon core even though they have the same radius.

It may be easily shown [112] that the dipole moments of an ionic lattice should be independent (in
theory) of M or v, and vary according to

m, = ¢ERC (109)

where E is the electric field at the ions and C is the elastic constant, so that the dependence on the mass
of the lattice ions would reduce here to M~'", To account for the M~-'?2 dependence of Frohlich’s original
prediction, a v,,'?2 dependence would have to be assigned to K, ! in order to cancel the v,,'/2 factor in
Equation (108). This possibility is supported to some extent by the properties of diatomic compounds
listed in Table 9, where a definite monotonic increase in K, with v~/ suggests the existence of at least
an indirect dependence of K, on nuclear mass that might contribute to an isotope effect.
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TABLE 9
Dielectric Data for lonic Compounds [23]

K Keop K-K Ko v vg 2 e
op D D
x 1012 g x 10°¢ s K
LiF 9.27 1.92 7.35 2.42 19.6 0.226 941
NafF 53 1.75 3.55 2.61 12.2 0.286 586
NaCl 5.62 2.25 3.37 3.75 7.79 0.358 374
NaBr 5.99 2.62 3.37 4.66 6.11 0.404 294
Nal 6.60 2.91 3.69 520 5.26 0.436 254
KCI 4.68 2.13 2.55 390 6.16 0.403 296
KBr 478 2.33 2.45 4.55 497 0.449 239
Kl 4.94 2.69 2.25 5.91 4.39 0.477 212
RbCl 5 2.19 2.71 3.89 5.76 0.417 276
RbBr 5 2.33 2.67 4.36 4.23 0.486 204
Rb! 5 2.63 2.37 5.54 3.37 0.544 162
CsCl 7.2 2.60 4.60 4.06 525 0.436 252
CsBr 6.5 2.78 3.72 485 3.66 0.523 176
Csl 5.65 3.03 2.62 6.53 2.70 0.608 130
AgCl 12.3 4.04 8.26 6.01 5.86 0.413 280
AgBr 13.1 4.62 8.48 713 4.38 0.478 210
Zn0O 8.5 3.73 4.77 6.64 19.9 0.224 960
Zns 8.3 5.07 3.23 13.0 11.6 0.293 580

Since the time of the original prediction and verification of the isotope effect, its significance as
a test for superconductivity theories has probably diminished. Examples of the measured exponent values
in Table 8 reveal a variation from 0 to 0.61. In particular, the elements listed may be separated into two
groups, already made familiar by the Matthias model. For the nontransition elements with closed d'¢
shells, the exponent is approximately —1/2, thereby suggesting that K o ~ vD""z. For the transition metals
with largely unpolarizable cores of closed p® shells (i.e., noble gases), the magnitude of the exponent is
smaller, closer to the CET average of —1/4, and in some cases effectively zero. This latter category would
include the high-T_ oxides, where multication lattices may also dilute any isotope effect [113].

8.6 SUPERCONDUCTING COMPOUNDS WITH ¢ ~ 0

Continuing the discussion of p-type LiTi,O, spinel from Section 7.3, it is appropriate to describe
some further work on this system [114,115] in which positive polaron sources were created by excess
Li diluting the B sublattice to produce n-type Li'*[Li'* Ti**, , Ti** ,,,]0,. Superconductivity with
T_~ 11 K was observed [114]) or arange of 0z S 0.1; since x = (1-32)/(1-2), the polaron concentration
range translates into 0.4 < x S 0.5. Here the concentration is greater than 1/3, which is the limit antici-
pated for the real-space pairing (the double transfer concept) in a lattice with S, > 0, the question of spin-
pairing must be viewed in a broader context.
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If one considers the z = O case, where Ti** and Ti** ions may alternate through the lattice in perfect
order, polaron trapping is still intact but the system is now collective, with no possibility of an isolated
transfer. If one electron changes sites, either covalently or by hopping, it will immediately encounter an
exchange requirement from its new neighbor. This process would mean that an antiferromagnetic align-
ment must already be available, or that the neighbor must also transfer away to restore the original ionic
distribution. The implications for correlated covalent transfer in these n-type materials, where § =0,
suggest a conduction mode more like metals with a partially filled conduction band [116], and the spin
alignments may be arranged according to Li'*[Ti*(T-)Ti*(—))0, = Li*[Ti2*, (TL)Ti**, ()]0, where
a superconducting electron pair occupies every fourth B site.

An argument for the 2Ti3* — Ti%* + Ti** reactions is based on the comparative instability of the
Ti** ion. Because Ti** is the most stable titanium oxidation state, and Ti%* can be further stabilized by
spin-pairing, the above reaction could result in a net energy reduction during a transition to the ordered
superconducting state.

In addition to the semiconducting LiTi,O, spinels, there are a number of metallic binary transition-
metal compounds, e.g., NbO, NbN, Nb,Sn,V,Ga, that probably represent situations that are partially ¢ #0
cases. These materials have T, values in the 10- to 25-K range and suggest a type of superconductor that
is intermediate between the high and low T _ categories.

8.7 COMPARISON OF METAL AND OXIDE SUPERCONDUCTORS

From the above discussions it is now possible to contrast the superconductivity of metals with that
of the high-T oxides. As viewed from the CET perspective, the generic difference between the two
classes of superconductors prior to the onset of condensation is suggested in Figure 72 by the randomly
distributed local dipoles of metals as opposed to the array of large polarons centered about fixed charges
that characterizes the oxides. In both instances the population and distribution of the dipoles are dynamic
and controlled by thermal activation processes.

In metals there are no large polarons, and the dipoles themselves are mobile; therefore, supercon-
ductivity occurs only at the lowest temperatures, after almost every available dipole has condensed, i.e.,
large x,, Moreover, critical temperatures are further reduced because the activation energy Ehop is small
owing to the large electron screening effects (highest dielectric constants). With this situation it also
follows that the carrier density n{(0) is a maximum, and the dispersal parameter f — 0.

On the contrary, metallic oxides feature higher critical temperatures for two reasons. First, the E,
values are larger because of lower dielectric constants. A second less obvious cause is that the large
polarons allow the superconducting state to survive at even higher temperatures because ordering of the
carriers can occur at much lower densities, i.c., small x. However, this latter feature of the high-T
compounds also imposes a limitation on carrier densities. Because the highest temperatures at which
superconductivity occurs are achieved with a minimum of carriers, the superconducting state is tenuous
in this temperature range, and its properties reflect this fragility through reduced W values that were shown
carlier in Figure 47 to limit critical current densities near the T_ regime. Thus, it may be concluded that
although larger E, ., values are present in the oxides, it is the polaronic nature of the conduction that
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creates the small x, thresholds that allow the exaggerated T values that occur through reduced W ratios,
as indicated by Equation (39). With W = 1.76 typical of metals, the high-T, cuprates would have critical
temperatures well below 77 K.
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Figure 72. Dipole arrangements before superconduction condensation: (a) dispersed polarons in a mixed-valence
oxide, and (b) random local dipoles in a metal.
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Compared with metals, the oxides also have intrinsically lower carrier densities by the nature of
their chemical and electronic structure. It is interesting to note how intermetallic compounds offer a T
range (10 to 25 K) that is intermediate between the elemental metals and the complex layered cuprates.
In accord with the CET theory, this would suggest that nf(0), Ehop, x, and B would also fall into the
intermediate categories proposed in Table 10.

TABLE 10
Qualitative Comparisori of Superconduction Parameters
Material Class nX0) T, Ehon X, B
Metals Large <10 K Small Large 0
intermetallics Medium 10 to 25 K Medium Medium 20
Oxides Small > 25 K Large Small 0.5

One may conclude, therefore, that the promise of high-T. superconductors for high current appli-
cations could be somewhat illusory because of the sparseness of supercarriers at the higher temperatures.
On the other hand, critical fields are intrinsically larger than in metals as a result of the reduced electro-
static screening (smaller K). In the present state of the art, critical temperatures of the oxides may be
increased further by seeking out compounds with higher Ehop and by improving the dispersal of the fixed
polaron sources [1]. As shown in Figure 73, where model curves of n{ versus T based on Equation (65)
and normalized to the approximate n7(0) = N, value for YBa,Cu,0, are plotted for different B values, 40
the advantages of improving the polaron ordering are illustrated. Smaller P values increase the effective
carrier density at low temperatures, but they also further reduce the W parameter, thereby causing even
earlier falloffs in the nf(s) function. For B <0.375 the optimum carrier concentration x = 0.33, which is
the value proposed in Section 5.1.5 as the maximum possible for the real-space pairing option. Conse-
quently, the low temperature enhancement of n¢ would vanish when f is reduced below this level, but
the advantages of better polaron dispersal persist at higher temperatures because of the increased T,
values.

To place these estimates in a clearer perspective, a proposed supercarrier region for metals is drawn
in Figure 73, emphasizing their dramatic difference with the oxides and their inherent advantages for high
current density applications and low temperatures. Based on the estimates for the high-T cuprates, the
current density limit for YBa,Cu,0, could be raised by a factor of 2 over the value 4 X 108 amp/cm?
at T = 0 K (calculated in Section 6.6) and by a factor of 5 at T = 77 K. Based on the data presented
in Figure 47, a YBa,Cu,0, superconducting film with ideal crystallographic homogeneity and optimized
polaron dispersal would have a critical current density of approximately 5 X 107 amp/cm? at T = 77 K.

‘OEquation (65) may be modified according to nS(T) = nf(0)([1 —cxp(—Ehw/kT) » exp(W)], where W is defined
by Equation (39). For each calculated curve of Figure 73, E ., =4 meV, x, = 0.04, and the transfer efficiency
7 was assumed to be unity at the concentration values for peak T,, which are defined by x_, = (8p)" for
x up to 1/3 (see Figure 24). For B < 3/8 (or 0.375), the f§ values have no further influence on x__, and therefore
permit no additional enhancement of carrier or current densities at T = 0, as indicated in Figure 73.
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Figure 73. Temperature dependencc o” supercarrier density for values of dispersal parameter B = 1, 0.6, 0.375,0.2,
and 0. nf(T) curves are referenced to N, of the B = 0.6 curve, typical of YBa,Cu;0,.

Perhaps a better basis for comparison would be the product T W (= Ehop/k), which may be thought
of as a figure-of-merit temperature T,,,,. For example, intermetallic compounds such as Nb,Sn that feature
T,~ 18K and W ~ 2 yield ij ~ 36 K, while high-T, polaronic cuprates have T, ~ 90K and W ~ -
0.5 to give T, ~ 45 K. Although these two material types differ substantially in their regimes of
applicability, Tfm in either case could be raised by increasing the gap or trap energy Ehop As discussed
in Sections 3.2 and 8.5, this could mean lower dielectric constants to increase the polaron coupling
constant a and (as Matthias suggested) smaller atomic masses to raise the Debye frequency v/,
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9. SUMMARY AND CONCLUSIONS

In this study of superconductivity, a reassessment of the mechanisms for creation of the ordered
conduction state hac been presented, inspired by the unexpected discovery of the phenomenon in tradi-
tional perovskite insulators. The CET theory was initially an interpretation of the electrical measurement
data gathered from these materials. In a broader sense, however, it represents a departure from conven-
tional thought on the subject of superconductivity that is based on the idea that the superconduction
mechanism is intimately tied to chemical covalent bonding in all systems. The fact that its earliest
observation happened to be in metals probably obscured this possibility and led to the assumption that
supercarriers were exclusively derived from a free electron gas. According to the CET theory,
superconduction occurs in insulators because of bound electrons delocalized from their parent ions and
in metals because of free electrons returning to their parent ions.

Although macroscopic concepts like the two-fluid model and the microscopic theory of electron
pairing in k space correctly observe that some constraint to the free-electron gas is required for compat-
ibility with the London equations, the link to chemical bonding suggested empirically by Matthias [108]
and explored qualitatively by Goodenough [7] as part of his comprehensive study of metallic oxides has
been largely ignored.

The covalent transfer concept is deduced from previous contributions outlined in the partial evo-
lution of superconduction theory illustrated in Figure 74. Beginning with the phenomenology of super-
conductivity, the chart defines the two basic origins as the
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» Two-fluid model of Gorter and Casimir, whereby normal and superconducting carriers co-
exist with a condensation to the superconducting state occurring below a critical tempera-
ture.

+ London equations [9], which define the spatially ordered carrier constraint Vn =0 that serves
as the basis for the Meissner effect and from which evolved the concepts of penetration
depth (London) and coherence length (Pippard {11]).

Later theory by Ginsburg and Landau [12) generalized the notion of coherence with the introduction of
a quantum mechanical wave function for the ensemble of supercarriers through the solution of a
Schrodinger-type equation. The role of electron-phonon interactions in combination with the idea of an
energy gap was introduced by Fréhlich [109,110], whose efforts led to the prediction of the isotope effect.
From this background evolved the microscopic models, particularly that of Bardeen, Cooper, and Schrieffer
{81, which have successfully explained many of the experimental mysteries associated with this remark-
able phenomenon in metals.

As indicated in Figure 74, the CET theory evolves from the conventional track in most respects,
but departs from the microscopic models through its assumption that only electrons in bonding states
participate in superconduction. With this premise, the macroscopic molecule and two-fluid concepts
follow directly, and the electron-lattice interaction is accounted for by thermally activated electron hop-
ping that represents the conduction mechanism for normal electrons.

There are two aspects of CET that are fundamental in comparing it with the BCS theory. The first
is the role of phonons, which limit the number of carriers available for superconduction through thermally
activated hopping and destroy superconduction when the density of hopping electrons exceeds a limit
determined by the large polaron radius and the degree of polaron dispersal. Unlike the BCS theory,
however, there is no requirement for phonons to mediate the pairing of electrons in k space, and, con-
sequently, no need for their existence as T — 0 K. In the BCS theory superconduction is destroyed by
k-space pairs breaking up as a result of temperature increases that reduce the pair gap energy A(T). In
the CET case pairing is in real space, resulting from local magnetic exchange between neighboring ions
and is destroyed by thermally activated hopping. The second important aspect of the CET approach is
the requirement for S = O ions in a medium of long-range magnetic disorder (frustration), where the
activation or pair-breaking energy E,‘op is reduced to the low millielectron volt range. Although there is
no temperature-dependent energy gap for paired electrons, E.‘,mp represents a counterpart but differs in its
invariance with temperature — a trap instead of a gap.

Another important parameter of this model is W, the ratio Ehop/ch. In collective electron systems
(metals), W is typically 2, approximating the BCS ratio A(0)/kT, = 1.76. For polaronic materials W can
be smaller, depending on the polaron range and dispersal, and it is shown how the T, values can be higher
than in a collective system. It also follows, however, that there can be a price for this T, advantage in
the form of lower critical magnetic fields and current densities as T — T .

In spite of the simple exponential diffusion function employed to partition normal electrons from
the total electron population, agreement between theory and experiment in several areas is remarkably
good. The fits of theory to data for critical temperature as a function of carrier concentration; the
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agreement between normal resistivity as a function of temperature; the variations of critical fields and
current densities with temperature; the experimentally verified values for penetration depth, coherence
length, and microwave surface resistance; and the prediction of the coexistence of Ty, and T, = 0 that
signals the simultaneous extinction of magnetic order and the onset of superconduction, offer strong
evidence that the model may r:present a large part of the reality involved. Of the physical parameters
for which values were assigned in the calculations, Ehop, x,, a, K, and b fall well within the range of
measurement or expectation for the perovskite crystal systems. Because there is no independent method
of determining B, its value was chosen for best fit to the data. The values of B < 1 (real-space pairing
case) are reasonable, however, indicating that the polarons are dispersed better than in a random distri-
bution in accord with Madelung electrostatic energy considerations.

Principal features of the CET theory are summarized as follows:

* The critical temperature T, is directly dependent on the concentration of available
supercarriers. In polaronic oxides, this concentration has a maximum of x that is set by the
chemical composition, and the effective supercarrier concentration x ¢ is determined by the
efficiency of the covalent transfer mechanism and the degree of polaron dispersal.

* Thermal activation of electrons into a collective continuum is a basic process that limits the
supercarrier concentration in all superconducting materials, not only mixed-valence ionic
compounds, and represents the cumulative result of electron-phonon interactions. At higher
temperature (or lower Ehop), randomized hopping can create carriers that produce metallic
resistivity behavior in the normal state, with a positive linear slope for high-T,. materials
above T = Ehop/k. Temperature characteristics of normal conduction, therefore, result from
two competing factors: a mobility that decreases with temperature and a mobility-activated
carrier population that increases with temperature.

* The electrostatic/elastic polaron trapping energy E,, is inversely dependent on the effective
dielectric constant that screens the local electric fields, i.e., Kcﬁ", through the a coupling
constant, which may partly explain why the T values of metals are lower than for oxides.
Although polarizabilities are expected to increase with valence charge and ionic bond
length (or with the polarizabilities of the individual ions, e.g., Ag'* with a closed 4d shell
is more polarizable than K'* with an argon core even though they have the same radius),
elements with the covalent capability required for superconduction also tend to be more
polarizable. Therefore the task of raising T, may reduce to the search for a material with
lower K. that has enough covalent electrons for superconductivity.

The transfer integral b of the covalent bond is a fundamental parameter for determining
whether superconduction is possible. If the stabilization energy from the covalent bond
(~ b) permits a transfer mechanism capable of overcoming the thermal activation (or pair-
breaking) energy Ehop, the London macroscopic molecule may then form as the basis for
the superconducting state, which permits spontaneous electron transfer without requiring
the stimulation of lattice vibrations. Large b values not only help to optimize the value of
X but also lower the threshold polaron density x,, which, in tum, raises the value of T,
through the approximation T, ~ (E,m/k) (x /X))
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» Long-range magnetic frustration, antiferromagnetic in oxides or ferromagnetic in metals, is
a prerequisite to superconduction because the exchange contributions to Ehop are large enough
to negate the basic b > E,  condition. The most convincing experimental evidence of this
effect is the simultaneous observation of T,,T_ = 0 in the high-T, perovskites at a con-
centration threshold where large polarons merge to form an ordered chain of covalently
linked celis.

«§ = 112, S = 0 adjacent cation pairs, representing the mobile molecular ion of an isolated
polaron, are necessary to establish the magnetic frustration condition in mixed-valence
oxides and to provide boson carriers for statistical compliance with the requirements of a
superfluid state.

* Polaron dispersal in the perovskites (characterized by the probability-related parameter )
can have a great influence on the effective number of supercarriers through a direct
relationship to the W parameter. Where dispersal is less complete, as in the case of the
La, Sr CuO, system, a parabolic-type of T, versus x curve occurs with a resulting peak
inT,

« The occurrence of Ci* in the Cu-Og pyramidal sites of YBa,Cu,0, may be approximated
by the linear function proposed originally [1], in general accord with the results of valence
bond-sum analysis [52]. Also modeled by a similar linear function, Cu'* ions appear al-
most exclusively in the linearly coordinated sites of the nonsuperconducting Cu-O, chains.

» Electron pair carriers exist in real space because of local Pauli principle requirements.
Because ordered states are not generally subjects for statistical analysis, the occasion for
pairing, which appears to be well established by the double electron charge effects observed
in flux quantization and Josephson junction phenomena, must lie beyond simply a require-
ment to satisfy Bose-Einstein statistics. As summarized in Table 11, the pairing occurs
between spins (S = 1/2) of adjacent cations and as paired electrons in outer orbits, occurring
naturally or as part of induced dipoles. In antiferromagnetic systems, a dynamic or spin
wave ordering might be anticipated.

The decrease in Gibbs free energy AG results from a dynamic dipole ordering similar to a

ferroelectric transition but with the energy converting to kinetic instead of thermal, thereby
maintaining the adiabatic nature of the condensation. Dipole ordering satisfies the neces-

sary and sufficient Vn, — O condition of the London theory. In this model AG derives its

temperature dependence through its quadratic relation to nf. Furthermore, AG is not di-

rectly related to either E'hop or T, thus differing from the BCS version that depends on the

gap energy A(T) as indicated by Equation (G-1). Larger AG from the low symmetry of

high-T, cuprate lattices (see footnote 27) may account for higher H_ values and the possible

enhancement of other parameters that depend on the condensation energy.
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TABLE 11

Superconduction Pairing Arrangements

lon Mix Bonding Transfer Spin Arrangement Carrier Example

c#0 | empo Oxide | (~=}(T-)(-\)(T-) = ()(T)=)(T-) | pType | Cu?+®
s—po Oxide Bi4+(5+)
pb3+(4+)
(T (M) (M) = (M=) =-)T-) | nType | Cu™2
gty Oxide | (—=)(T-)(-1)(T-) = ()(T-)=-T-) | pType [ Tid+4+

V4+(5+)
Nb4+(5+)
Ta*+(5+)

c=0 | Lty Oxide | (T)(=-)=-)--) = (~)=-)=-)(T) | nType [ Ti¢+®
(MEMNE) = ITDEMN) | aType | Tit2s

c=0 | Odd-n T E=-) T =) =2 EOTY)ET) | aType Nb, Ti
gty Metal

c=0 | Even-n dhayhhal) = FHFHAEHTY | AType Hg,Pb,Sn
2,527 Metal

* Parameter values depend on the effective supercarrier density n{ (as summarized in Table
6). Among the significant results are the dependences of H_and i. on n{, which lead to
exponential tails in the i (T)/i (0) versus 7T/T_ curves that include an inflection point at
TIT.= W/2 on the H(T)/H (0) curve. For materials with smaller W values, such as the
high-T. perovskites, the critical fields and current densities are correspondingly smaller as
T — T,; therefore, it may be concluded that higher critical temperatures achieved with fewer
carriers occur at the expense of reduced magnetic field and current carrying capabilities.

* Tle ratio x (= A /&) in perovskites is independent of nf (and therefore temperature) with
values >> 1 for the high-T, compounds, thus suggesting that these materials are natural
type-II superconductors. As a consequence, the fluxoid lattice that exists at magnetic fields
above H_would be unstable because the domains are not pinned to impurity sites or
nonsuperconducting regions. The occurrence of the smaller coherence lengths supports the
proposal that carrier velocities are larger in these semiconductors because of higher local
electric fields that result from lower dielectric constants, ie., v, ~ K.

* The periodic table may serve as a map for discerning superconductor categories. Where
¢ # 0, transition cations in oxides with unfilled e, orbitals at the upper end of the d" series,
or mixed-valence combinations of Pb and Bi in oxides may form high-T,. compounds. At
the low end of the 4" series, elements with unfilled 1y orbitals (odd-electron case) may
provide a CET mechanism by direct cation-cation transfer either in oxides or metal struc-
tures. In metals where electron pairing already exists in the atomic states (s? or s%p?), direct
real-space pair covalent transfer may occur via combinations of s and p orbitals.
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In summation, all superconduction properties are controlled fundamentaliy by the volume density
of superelectrons. The total number of conduction electrons is determined by chemical composition
(including substitutions). The fractional population available for superconduction is principally a func-
tion of temperature within the limits imposed by the trap energy (Ehop), imperfect polaron dispersal
(P < 1), and covalent transfer efficiency (n < 1). Finally, the density of superelectrons actually partici-
pating in a supercurrent is controlied by the magnetic field. Based on this view, ideal superconductivity
would require a small dielectric constant (to increase Ehop), strong covalence between participating lattice
sites (N = 1), and perfect chemical and structural homogeneity (P = 1).

Among the superconducting materials currently known, interesting contrasts exist between the
high- and low-T, groups. The oxides are principally ionic with a covalent component and feature lower
K constants te provide the larger Ehop energies necessary for the high 7, values. With their small x,
thresholds, the reduced W values that result cause an additional enhancement of T.. Unfortunately, the
density of superelectrons in these materials is limited by the multication chemical formulation and the
imperfect cation ordering that further reduce the maximum current density at higher temperatures through
reduced W values. On the other hand, low-T, metals and intermetallic compounds have intrinsically higher
carrier densities and close to ideal chemical order but suffer from the high dielectric properties of free-
electron conductors.

For metals, the problem of low T, must be solved without reducing W, requiring reduction in
polarizability without decreasing carrier density. For polaronic materials, the problem of low W must be
solved without reducing T, requiring an increase in carrier density without increasing polarizability. In
this latter case, the effective carrier density could be increased by improving polaron dispersal. The
resulting increase in T, however, would be accompanied by an unwanted decrease in W.
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APPENDIX A
SELF-CONSISTENT MOLECULAR-ORBITAL THEORY

In this study of charge transfer between ©-bonding orbitals of adjacent ions, the energy level
structure and corresponding molecular orbital functions that are composed of linear combinations of the
individual eigenstates may be calculated by the self-consistent (Hartree-Fock) approximation [117]. For
the present purposes the analysis of the two-level model in Figure A-1 is sufficient to describe both the
formation of bonding and antibonding MO states, as well as the physics of electron (or hole) exchange
transfer among similar ions in a region surrounding a polaron source.

14539172

TWO-LEVEL PERTURBATION MODEL

. e
e —
A
L -
Figure A-1. Definitions of MO bonding A_and antibonding A states: (a) conventional perturhation format, and (b)
molecular-orbital format.

To treat this system by perturbation theory, the Hartree-Fock Hamiltonian is expressed as

H=H + H, , (A-1)
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where #, and A, are the respective metal and ligand Coulomb energies in the lattice before applying
exchange stabilization. In the usual manner, the Hermitian matrix elements /= <in Hl X between the

i and j unperturbed wavefunctions are formed, and the secular determinant becomes [117]

H, -\ K, E,-A B-AS
= = 0 .
where
B = (| Hlxy) = (EL+EpS _ (exchange integral)
S = (xleM) . (overlap integral)

The eigenvalues follow as

(E + E,)(1-25%) % [(E - E\)*(1-5%) + B2
A, =

2(1-5%)

The coefficients c;; of the MO eigenvectors ¢, =2 c;iX; are thus found from the row X column

products summarized by the relation s

Ty = Adye; =0

wherez c,-j2= 1.
j

Accordingly, the determination of ¢, and ¢, follows from Equation (A-5):

E,-Adcy + B-AS)cy, =0, ¢ lf+ct=1,

and

(B—A+S)CZ| + (EM'A...)Cn =0, C2|2 +6222 =1.

An exact solution of Equation (A-6) yields the coefficients

~(E, +E, ~A)S
tq = P

VIE, +Ey - A)*S*+(E - A %)
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(A-3)

(A-4)

(A-5)

(A-6)




E -A_

2 7 JE, + E, - )25+ (E, - A
L ~(Ey=A)
2 NUE, + Eyy - A)S2+(Ey - A )
(E,+E,—A)S
5]

- VIUE, + Epy = A)S?+(Ey - A )2

If $2 << 1, the coefficients of Equation (A-7) can be put in the more useful form of

1
= AN |1 +
V1 + 852 + Q%1 + 552) + 208(1+ S2N(1+Q?)]
1
€, = (IN2) 1 -
VI1 + 82 + Q%1 + 552) + 20S(1+ SHV(1+Q?)
N 1
¢y, = (N2 |1 -
2 V1 + §2 + QX1 + 552) — 20S(1+ SHV(1+0?))

1
V1 + 52 + Q%1 + 552) — 20S(1+ SHN(1+0?)]

€y == (IND|1 +

12

12

(A-7)

(A-8)

where Q = B/(E, - E,,), and the minus sign before the 20S comresponds to the antibonding state defined
below. As discussed in Ballhausen and Gray [117], correction factors are required to reestablish
orthonormality of the eigenstates where S # 0:

Ciu =X Cp = cXi Gy = ¢f, Cpp = ¥

(A-9)

where X = (¢, ;2 + ¢;,2 + 2¢,,¢\5S) 2, and Y = (5,2 + ¢ + 2¢5,¢,,S)'2. The normalized MO functions

become
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APPENDIX B
THE Cu?*0* MOLECULE

When a charge unbalance is created by substituting a Sr?* ion into the La>* sublattice, a question
arises immediately about the manner in which electrostatic neutrality is preserved. Because La, Sr,CuO,
is principally an ionic material, the hole is not excited but exists by virtue of the Sr* substitution — it
is better described as a (CuO)* polaron bound to its Sr2* source and transported through activated mobility.
In polaron notation, La,  Sr, CuO, could be expressed as (La,_ Sr,)*"(CuO,)™; therefore, analysis would
logically begin with assignment of the hole to a lattice site adjacent to the Sr2* source, with the simplified
(CuO)* molecular ion as the polaron that moves among CuO molecular lattice in the attractive field of
the negative charge represented by the Sr2* acceptor [31]. This calculation begins with the derivation
of the MO energy level scheme for the 3d-2pc states of the CuO molecule.

In the cuprate systems, the Cu?*3*) occupy tetragonal (slightly orthorhombic), pyramidal, or square-
planar oxygen coordinations. To appreciate the origin of the molecular energy levels, a generic model
is developed based on the point-charge crystal-field concept, as shown in Figure B-1. If the ionic
character of the ligands is represented by their valence charges, the five d orbital states are split by an
energy parameter A , with the b functions stabilized by (3/5)Ad and the €, levels destabilized by
(Z/S)Ad‘ In cases where the crystal-field approximation is sufficient to describe the physical phenomena
observed, e.g., optical spectroscopy, this quantity is called 10 Dq. In reality, however, 10 Dgq also in-
cludes the splitting caused by the covalent interaction, because the ligands have an additional coupling
with the cation in the form of orbital wavefunction overlaps, usually p orbitals that form o bonds with
the e, states and weaker © bonds with the 1), group. As a consequence, the e, states are further de-
stabilized by A_ , as determined by the calculation technique in Appendix A. To a first approximation,
the n-bonded t,, states are treated as unperturbed by the covalence, hence the term “nonbonding.” As
indicated in Figure B-1, a more correct relation for the main optical wavelength splitting is given by

10Dg = A + 4, . (B-1)

where A, /10 Dq = 0.3 based on the orbital reduction factors inferred from electron paramagnetic reso-
nance (EPR) spectra [94].

Working MO diagrams for Cu-O, are given in Figures 55 and 56. The basic building block is the
Cu2*-0?" molecule, therefore calculations will focus on these two components with the relevant potential
energies as depicted in the basic two-body model of Figure B-2. As noted, the lattice energy determined
from the simple electrostatic attraction*! (with a reduced Madelung constant M’ to correct for the Born
repulsion contribution shown in Figure B-3) is -M'q_ g wezlro. The appropriate value for M’ = 1.5, which
is only slightly below the typical M of simple oxides [118], because E,, = — 43 eV for CuO [118], for
7o = 2 A in the Cu-O, plane, and ¢, =+ 2 and ¢, =-2.

4! This approximation is being used in lieu of a more complete analysis based on the series summation
of interactions over multiple groups of neighbors. Because the present exercise is intended mainly to
illustrate a theoretical methodology for estimating the MO functions and the associated exchange integral
b involved in the electron transfer, the analysis is limited to only the immediate ionic interactions.
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Figure B-1. Crystal field and covalent contributions to the semiempirical 10 Dq splitting betweent, . ande °bands: A 4

2
arises from the basic point charge approximation; the additional A, destabilization of e “' comes from eg-Zpa bonds.
In this case, the ratio A, /10 Dq is scaled t0 0.3.
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Figure B-2. CuO molecule approximation to the complete lattice energy E = —43 eV, using a Madelung constan: M
= 15 to represent the effective electrostatic fields that determine the respective cation and anion energies.
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Figure B-3. Born-Mayer function for CuO, indicating corrected Coulomb attraction curve of Madelung energy to fit
the E,,,, = —43 eV result. Correction is made by reducing M from 1.5 to 1 4.

If the Coulomb interactions within the CuO molecule are then based on this effective Madelung
energy (—43 eV), the stabilization energy of the outermost d electron on the Cu?* ion may be taken as
-15.3 eV, found by combining the outermost electron stabilization energy of free Cu?* = -36.8 eV [118]
(in this case the third ionization potential of neutral Cu) with the energy of the 02~ Coulomb repulsive
potential energy M'qmcz"’/r0 = +21.5 eV. Similarly, the stabilization energy of the outer 2p electron on
O% is chosen as E, = - 23.9 eV, determined from the electron affinity of O'~ = 2.4 eV,*? combined with

42 An estimate of the ionization potential for O~ may be obtained by combining the heat of formation
of hydrogen peroxide [119], with the electron affinity of the O atom, which has been well established
at 1.46 eV, according to

H,0% (lig) + O (gas) — H,0', (lig) - 096 eV ,
and
O + e O + 1l46eV

Because the peroxide is formed by replacing the O%" ion of the water molecule with what amounts to an
0,'~ion (or a bonded pair of O'~ions), still retaining the 110-deg bond angle, the repulsion energy of the two
O'- ions can be ignored, and the heat of formation reaction may be abbreviated as

0+ 0 — 20 -096eV ;

therefore, the ionization potential O% is found to be 2.42 eV, as deduced from the subtraction of the
above equations:

O-4+ e » 0O +242eV
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the stabilizing energy M’qwez/ro =-21.5 eV of the attractive force between the outermost electron on the
O?" ion and the double positive charge on Cu?*. If Ay=125eV is estimated from the total 10 Dg, it
may be assumed that the uppermost dlz_yz orbital is destabilized by = 0.75 eV. The net stabilization
energy of this orbital then becomes E,, = ~14.55 eV, and one may begin to examine the details of the

energy levels in Figure B-4. With these values for the unperturbed energy parameters, B = (E,+E)S =
-38.45 § eV, and there remains only the assignment of a value to the overlap integral S.
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Figure B-4. Composite energy level diagram for CuO model, éombining lattice energy estimates, point-charge crystal
field splittings, and MO splittings.

It is probably judicious to treat S semiempirically, because 10 Dg has been established by optical
absorption as 1.57 eV (12,600 cm™') [120], and try for a reasonable fit through A From Equa-
tion (A-4),

(B +E\)(1-28%) + VI(E-E) (1-5%) + BY] )
A= 20-5) ’ ®-2
and
A, = A -E, (B-3)
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Toward this purpose, a value of S = 0.10 produced a result of A, = 0.60 eV, thus yielding a computed
value of 10 Dg = 1.25 + 0.60 = 1.85 eV, approximately 18% higher than the value determined for the
Cu(H20)62" ion. The calculated value for 10 Dq appears quite reasonable, because this case places the
Cu?* ion in a strong tetragonal field with substantial covalence. Applying this value of S = 0.10 to the
foregoing analysis,

B = -385¢eV,
A, = -1395eV, (B-4)
A= -2411eV .

A further indication of the reasonableness of these estimates may be seen from the energy separation
between bonding and antibonding states, AA = A_ ~ A_= 10 eV, which is consistent with the band gap
(between the bottom of the metal e and the top of the oxygen 2pn bands) values (~ 5 eV) for transition-
metal oxides [121] after corrections for 10 Dg and the widths of the upper and lower bands are taken into
account. [Note that the magnitude of B = 4 eV in Equation (B-4).]

Upon substituting the above parameter values into Equations (A-6) through (A-10), the resulting
MO eigenfunctions become

%

0.24 y P 0.99 x,, (antibonding)

and
9, = 097y, + 0.15y,, (bonding) . (B-5)

From this result the probability of the ligand participating in the antibonding state is C2|2 = 0.06,
which means that the hole carrier in this model is, not surprisingly, greater than 90% associated with the
Cu cations and that the influence of the covalence enters mainly through the destabilization of the €,
antibonding state. The delocalization of the unpaired electron, therefore, is largely within the Cu sublattice
through the overlap of the e,andpoorpc orbital wavefunctions. It should also be pointed out, how-
ever, that if different parameter values were assumed in the initial conditions, e.g., that the ligand y, be
less stable than the metal %,,, the MO calculation would place the hole more on the ligand sublattice.

An alternative approach to this last question is summarized in Table B-1, where the two extreme
valence possibilies for (CuO)* molecular ion are compared in terms of traditional ionic bond energies:

« The hole is in the Cu sublattice (the conventional approach), according to (LaSr)™(Cu**02)*
« The hole is in the O sublattice (the peroxide scenario), according to (LaSr)—(CuZ*O'-)*.

Although both options may produce the S, = 0 requirement for Ty — 0, i.e., Cu* in a low-spin (d®)
configuration or the individual Cu?* and O'- spins in an opposing alignment, these estimates also lead
to the conclusion that the conventional approach is more likely because the ionic bonding stabilization
energy E, . is greater by almost 30 eV. The Verwey rule that higher valence cations tend to seek out
oxygen sites of highest coordination [122] is also based on Madelung energy considerations. A question
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associated with the peroxide model is related to ligand-field conventions -— how is the hole assigned to
the anion group? Does it reside mainly on the lowest energy ligands (assuming distortions are present)
or is it evenly distributed among them all?

For these reasons, the working assumption that the hole carriers are present principally in the Cu
sublattice as Cu?* ions will be adopted throughout this treatise. Regardless of which model is closer to
reality, however, the carrier is not totally localized on either ion but treated as an entity belonging to the
molecular chains that form conduits for the activationless ordered transfer called superconduction.

TABLE B-1
{CuO)* lonic Stabilization Energies
IP + EA® E_.b E_.°
Cu0)* Opti latt jonic
(CuO)* Options (eV) (eV) (eV)
(Cu3+-0%)* 36.8-3.8 = 33 -63.8 -30.8
(Cu2+-0')* 20.3-1.4 = 18.9 -21.3 -2.4

a |P = Cation ionization potential
EA = Anion electron affinity

® Ean = Mq.q,2%a where a ~ 1.90 A, the CuO bond length, and A ~ 1.5
€ Egp = 1P+ EA + Egy
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APPENDIX C
THE FOUR-BODY (Cu?**0*) - (CU?*0%) LINEAR MOLECULE

An extension of the MO model in Appendices A and B may now be applied to the superexchange
case of Cu?*-0?"-Cu?*. Because the carrier would, of necessity, occupy the highest energy d,2_2 orbital
in a & tetragonal complex, the approximations that follow focus on this state. As shown in the abbre-
viated MO diagram of Figure B-4, the antibonding state (¢, = 0.24 x, — 0.99 x,,) becomes the transfer
orbital and represents the starting point for the calculation. For the three-body problem, the usual
approach is to set up a 3 X 3 matrix for x,,, X,, and X,,’, where x,,” represents the second Cu?* ion, and
redo the analysis in Appendix A. Apart from the obvious complexity introduced by the cubic equation
of the secular determinant, there is also the difficulty that the y,, and J,,’ states are at different polaron
Coulomb energies and that this energy difference must be featured in the result. In reality, the second
CuO molecule is an approximation to the (CuO)* ion raised to a higher energy (EM’— ) as a result of
the field from the (LaSr)~ polaron sources (see Figure 3).

To accommodate these objectives the results of the seif-consistent MO calculations in Appendices
A and B are presumed upon, and instead a four-body linear chain consisting of two consecutive CuO
molecules is considered (see Figure C-1). With this approach, a resulting 4 X 4 matrix includes bonding
and antibonding states of both molecules with starting functions ¢,, ¢,, ¢,, and ¢, and matrix elements
H, = (¢‘.|II|¢}) reading as

¢a ¢a’ ¢h ¢b'
o, | A-2 b-s, 0 0
o, | b-rs,  A-R 0 0
¢ | O 0 b, - As, A= . (C-1)
where®3
s, = (0,10
= CC;/ (X, | XY= CCr' | An 7= CCay Uy | XD+ CyCo Uy l y Y9
5, = (%, | ¢b’>

=C/ G/, | X+ CHC I Xn 2+ CChy Oty l X+ CiaC ' (m lXM 9
b= (0, lH16,) = (A, +A,)s, .

and
b,= @, Hl0)) = (A_+A_s, : (C-2)

43 The usual nondegenerate approach for estimating transfer integrals results in a product (b J[b 14y 1, Which
leads to a squaring of the direct metal-ligand transfer integral. In terms of the nomenclature used here,
b ~ B? (see, for example, Goodenough, Magnetism and the Chemical Bond, pp. 165-185).
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Figure C-1. CuO-CuO two-molecule chain.

The above determinant conveniently breaks up into a pair of 2 X 2 matrices that directly follow the
solution outlined in Appendix A. Only the solutions of the antibonding matrix (where it is assumed that
the carrier resides) is the concern because the two resulting quadratic equations represent the perturba-
tions of the original antibonding and bonding states, respectively.

AL+ A0=252)  [A, = AYKI-52) + bR

A
* 2(1-35.2)

(C-3)

After substituting A, back into the secular equation, the corresponding eigenfunctions of the perturbation
become

Vo = X,k 6, + Ky 0,)
¥, = Ya (k2l ¢a + k22 ¢a’) ’ (C-4)

where the k,.j weighting coefficients are similar in structure to Equation (A-8),

1 12

k= (IN2) |1+
VI + 5,2+ G,(1 + 55,2) + 2G p5,(1+ s2N(1+4G ;)]

1 12
ki, = (IN2) |1- :
2 N1 + 5.2 + G2 + 55.2) + 2G5 (1+ s 2N(14G ;2]
1 12
= (N2 |1- :
2 V1 + 5,2 + G, X1 + 55,2) = 2G 55,01+ s, 2N(1+G )]
1 12
ky = ~(1IN2)[1+ . (C-6)
= VI1 + 5,2 + Gy (1 + 55,2) = 2G 5,1+ s,2N(14G,,)]

140




The normalization constants follow as X, = (1 + 2k, k5,072, Y, = (1 + 2kykps, )72, and G|, =
b/AE,, + s, with the polaron Coulomb energy AE\, = E,,' — E,, = A’ — A,. Because s, << |, it may
be assumed that G|, = b/AE,,. Upon inspecting Figure C-1, Equation (C-2) for the magnitude of the
orbital overlap parameter of the antibonding states reduces to s, = C,,C,,’ (xL‘xM’) = 024 X 0.99
S = 0.024, for S = 0.1.

For A,' + A, = - 28 eV, Equation (C-2) then yields b ,=—0.67 eV, which has a magnitude about
50% greater than the 0.43 eV value determined from the Néel temperature of CuO that was used in the
various covalent transfer computations throughout this report. This discrepancy should be considered sur-
prisingly small when t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>